Understanding how chronic stress modulates immune activity in the tumor microenvironment

Elizabeth A. Repasky, PhD
Professor of Immunology
Program Leader: Cancer Stress Biology Program
Roswell Park Comprehensive Cancer Center
Buffalo NY

AGS/NIA R13 Bench-to-Bedside Conference Series
Stress Tests and Biomarkers of Resilience
Hyatt Regency, Bethesda MD
March 4-5, 2024
No Disclosures
Increased chronic stress in cancer patients

- Pain, Social Isolation
- Medical bills “financial toxicity”
- Anxiety
- Depression
- PTSD
- Sleep loss
- Uncertainty of the future
- Fear
Systemic stress response is regulated by two major pathways

1. Sympathetic nervous system (SNS)
 - Norepinephrine/Epinephrine bind adrenergic receptors
 - Spinal chord

2. Hypothalamic–pituitary–adrenal axis (HPA)
 - CRH
 - ACTH
 - Glucocorticoids
 - Medulla
 - Paraventricular nucleus
 - Hypothalamus
 - Pituitary
 - Adrenal glands

FIGHT or FLIGHT RESPONSE and psychological forms of stress (anxiety, fear, depression) including thermal stress (hot or cold)
Housing temperature: A useful model system to study the impact of *chronic* adrenergic stress on immuno-oncology

- Kokolus et al., PNAS 2013
- Eng et al., Nat Comm 2015
- Bucsek et al., Can Res 2017
- Mohammadpour et al., JCI 2019
- Chen et al., Nat Comm 2020
- Qiao et al., Can Imm Res 2021
- Mohammadpour et al., Cell Reports 2021

Figure from MacDonald/Choi et al./Repasky
Trends in Molec. Med. 2023
Standard housing temperatures induce chronic β-adrenergic stress

Thermoneutral housing (30°C) decreases circulating norepinephrine but does not change core body temperature!

We use several ways to manipulate β-AR signaling in mice

- **Isoproterenol (ISO, 10μM)**
- **Thermoneutral Temperature (TT 30°C)**
- **Standard Temperature (ST 22°C)**
- **Propranolol (PROP, 200μg, i.p.)**
- **Genetic knock out**
Tumor growth is slower in mice housed at 30 °C

Kokolus et al/ Repasky
PNAS, 2013

N = 5 - 6; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
Mice Housed at TT Develop Fewer Metastatic Tumors

4T1 mouse model
Triple Negative BreCa

Kokolus et al, Repasky
PNAS 2013
Relief from cold stress slows tumor growth rate: This effect is lost in SCID mice.

Kokolus et al, Repasky PNAS 2013
Adrenergic signaling blockade improves tumor growth control at ST: depends on adaptive immune system

Propranolol: pan-β-AR antagonist

Eng et al., Nature Comm. 2015 Bucsek, Qiao et al, Cancer Research, 2017
T-cells isolated from tumors of mice housed at TT have a more “activated” phenotype

Kokolus et al, Repasky PNAS 2013
β-AR stress signaling drives CD8⁺ T cell exhaustion in the tumor microenvironment

Guanxi Qiao, PhD

Qiao et al., Cancer Immunol Res, 2021
Qiao et al., Cancer Immunol Immunother 2019
Inhibition of T cell function by adrenergic signaling is combined with enhanced MDSC survival and function.
Ongoing clinical translation using propranolol in combination with immuno- and/or radio-chemotherapies

Clinical Translation

New Trials
Melanoma: Phase I Trial Gandhi (TII) PI Clin Can Res 2020
Multi-center Phase II Shipra Gandhi, PI
M Myeloma: Phase I/II Trial, Hillengass (PI)
Esophagus: Phase Ib/II Singh, PI;
Esophagus: Phase II Mukherjee, PI

Breast Cancer:
CPI refractory population: Pilot to Phase II (Gandhi, PI) seeking collaborators and funding.

Canine and Human Sarcoma: Phase II, with Cornell Univ Veterinary Hospital (in development

ICI- Bucsek et al., Cancer Res. 2017
Radiation- Chen et al., Nat. Comm, 2019
Chemotherapies- Eng et al., Nature Comm. 2015
SUMMARY: Chronic stress negatively influences cancer treatment outcomes through:

- Suppression of anti-tumor immune activity

These data may contribute to our understanding of how chronic stress leads to more aggressive cancers in patients and to the identification of novel biomarkers in patients in need of greater stress-reducing interventions.

Question? How does chronic stress affect anti-tumor immune function in older individuals compared to those who are younger?
Whatever we accomplish is due to the combined effort.” – Walt Disney

Repasky Lab
Saeed Daneshmandi, PhD
Sarah Choi, MSTP program
Nathan Roberts, PhD student
Caitlin James, PhD student
Bonnie Hylander, PhD
Minhui (Kate) Chen, PhD
Feng Li
Eugene Kononov

Hemn Mohammadpour Lab
Qi Yan, PhD
Anushka Malhotra

Scott Abrams, PhD

Clinical collaborators
Igor Puzanov, MD
Shipra Gandhi, MD
Marc Ernstoff, MD
Anurag Singh, MD
Sarbajit Mukherjee, MD
Phil McCarthy, MD

Funding Sources:
NIH R01 CA205246;
NIH R01 CA099326; NIH R01 CA236390;
McDonald, and Mohammadpour F 30, and 32 NRSA pre- and postdoctoral fellowship (2019-2021):
Mohammadpour- K99/R00 Pathway to Independence Award (2021-2026):

RPCCC Comparative Oncology Shared Resource
Sandra Sexton VDM
Mike Moser, PhD (IACUC)

John Loftus, PhD Cornell Vet College
Edith Lord, Scott Gerber URMC
David Farrar, PhD, UT SouthwesternMC
Todd Schell, PhD; Penn State Hershey
Joe Drabick MD; Penn State Hershey
Andrew Lane PhD and Teresa Fan, PhD Univ. of Kentucky

β2 adrenergic receptor–mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells

The Journal of Clinical Investigation

Hemn Mohammadjour, Cameron R. MacDonald, Guanxi Qiao, Minhui Chen, Bowen Dong, Bonnie L. Hylander, Philip L. McCarthy, Scott I. Abrams, and Elizabeth A. Repasky

Department of Immunology, and Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.

β2-AR signaling increases immunosuppression by MDSCs

β2-AR signaling promotes MDSC survival & protumorigenic function

T CELL

MDSC

NE

β2-AR

IFN-γ

CHRONIC STRESS

(anxiety, pain, depression)

SYMPATHETIC NERVES

SPLEEN

TUMOR

MDSCs:

↑ expression of PDL-1 + arginase I

T CELLS:

↓ proliferation

↓ IFN-γ production

APOPTOSIS

ANTITUMOR FUNCTION

STAT3

Bcl-2

Arg1

PD-L1

VEGF-α

β2-AR

MHC

TCR

PD-L1

FAS

FASL

MDSC

T CELL

IFN-γ PRODUCTION