Energetic and Mitochondrial Drivers of Stress responses
BIOLOGY, PHYSIOLOGY, COGNITION, CONSCIOUSNESS
PSYCHOBIOLOGICAL ALLOSTATIC PROCESSES

RESILIENCE
ENERGY STORED AS CHEMISTRY

Oils and fats, proteins, carbohydrates

\[\text{CO}_2 + \text{H}_2\text{O} = \text{C}_{17}\text{H}_{33}\text{COOH} + \text{O}_2 \]

EATING and BREATHING

Food

\[\text{CO}_2 \quad \text{H}_2\text{O} \]

‘Waste’ products

ENERGY STORED AS CHEMISTRY

BIOLOGY, PHYSIOLOGY, COGNITION, CONSCIOUSNESS

PSYCHOBIOLOGICAL ALLOSTATIC PROCESSES

RESILIENCE

Biochemistry 2022
How much energy do stress responses cost?
Life-sustaining processes driving homeostatic regulation

Acute response patterns and predictive recalibrations within the range of adaptive capabilities

Chronic, energetically-demanding recalibrations towards new regulatory set-points

Breakdown of physiological network leading to symptoms, accelerated aging, disease, and death

ACUTE STRESS

CHRONIC STRESS

ALLOSTATIC RESPONSES

ALLOSTATIC STATES

Disrupted communication (e.g., blunted hormonal response)

System dysfunction (e.g., high HbA1c)

System breakdown (e.g., heart failure)

Hyperactive system (e.g., inflammation)

Hypoactive system (e.g., ANS, low HRV)

Energy expenditure

Organismal network

Bobba-Alves, Juster, Picard. Psychoneuroendocrinol 2022
Cellular allostatic load is linked to increased energy expenditure and accelerated biological aging.

Glucocorticoid signaling increases energy expenditure by 60% and accelerates cellular aging by 10-40%.

Bobba-Alves et al. PNEC 2023
How much energy do stress responses cost?
How do energetics and mitochondria influence physiological responses?
Animal models of impaired mitochondrial OxPhos and redox

Picard et al. PNAS 2015
Mitochondrial functions influence stress-induced HPA axis activity

mtDNA

- **Stress**
- **Recovery**

- **WT**
- **ND6**
- **COI**

Corticosterone (ng/dL)

- **Time (min)**
 - 0
 - 30
 - 60
 - 90
 - 120

Glucose levels during stress and recovery

- **WT**
- **ND6**
- **COI**
- **nDNA**

Plasma concentration of alanine in unstressed and after 60 min stress

- **Ratio CORT/ACTH**
 - 60 minutes (n = 7-10, one-way ANOVA P = 0.054 (mtDNA) and < 0.001 (nDNA), Holm-Sidak's multiple comparisons).

Picard et al. PNAS 2015
Sympathetic Adrenal-Medullary (SAM) Axis

Norepinephrine

Epinephrine

Picard et al. PNAS 2015
Mitochondria drive unique stress response “signatures

Mice with different mitochondria

- **WT**: Normal function
- **ND6**: ↓ Respiration
- **COI**: ↓ Respiration
- **ANT1**: ↓ Energy Exchange
- **NNT**: ↑ Oxidative Stress

Stress response measures (n=74)

WT

Component 1 (48.5%)

Component 2 (25.2%)

STRESS RESPONSE SIGNATURES

Picard et al. *PNAS* 2015
How do energetics and mitochondria influence physiological responses?
Do mitochondria regulate the stress response in humans?
Mitochondrial Stress, Brain Imaging, and Epigenetics — MiSBIE
Mitochondrial Stress, Brain Imaging, and Epigenetics — MiSBIE

Brain structure and function
Neuropsychological function

Disease biomarkers
Stress reactivity
Energy expenditure
e.g., Cortisol, NE, GDF15, Lactate, etc.

mtDNA heteroplasmacy
Mitochondrial OxPhos
Lymphocytes, Monocytes, Neutrophils, Platelets

Total N = 110

- Healthy controls (n = 70)
- mtDNA defects
 - 3243A>G (group A) (n = 20)
 - 3243A>G (group B) (n = 5)
 - Single deletion (n = 15)
How do metabolites shape stress responses?
Picard and Shirihai. Cell Metab 2022
Gut-derived metabolite short-chain fatty acids

Placebo Low dose High dose

[Graph showing cortisol levels over time for placebo and different doses of intervention]
How do metabolites shape stress responses?
How does information about mitochondrial health reach the brain?

GDF15
What does GDF15 mean to the organism?

- Expressed in >90% of somatic tissues
- Triggered by cellular stressors (ISR)
- Activates canonical stress axes
 - Hypothalamic-pituitary adrenal (HPA) axis (CORTISOL)
 - Sympathetic activation (Catecholamines (NE))

Signals on the brainstem

Lockhart et al. *Endocr Rev* 2020
What does GDF15 mean to the organism?

Expressed in >50% somatic tissues

Triggered by cellular stressors (ISR)

Signals on the brainstem

Activates canonical stress axes

Organismal body-brain signaling

Psychological stress transiently increases GDF15 in humans

Monzel et al. *Life Metab* 2024
Knowledge Gaps

• What proportion of interindividual differences in the magnitude and nature of stress responses in humans is driven by interindividual differences in mitochondria? MiSBIE

• How variable is mitochondrial biology, within a person, over time? Likely variable

• Can we study mitochondrial stress regulation in vitro, in simple cellular systems? Complexity of stressors, feedback

• Are the health benefits of interventions like exercise on physiological systems, mental health, and aging driven by mitochondrial adaptations?
Research Opportunities

• Studies among individuals across a wide spectrum of mitochondrial energy transformation capacity/health (genetic mitochondrial defects — MiSBIE)

• Exogenous metabolite supplementation (SCFAs)

• Understanding the basis of health and resilience, in exceptionally healthy individuals

• Psychobiological studies of resilience beyond biology and physiology
Precious collaborators

Mitochondrial Biology & Medicine
Michio Hirano
Catarina Quinzii
CUIMC Neurology

Brett Kaufman
Pittsburgh University

Gyuri Hajnóczy
Erin Seifert
Thomas Jefferson University

Orian Shirihai
Mike Irwin
UCLA

Tonio Enriquez
CNIC Madrid

Vamsi Mootha
Rohit Sharma
Harvard & MGH

Ryan Mills
University of Michigan

Gilles Gouspillou
UGAM

Jon Brestoff
Wash U

Psychosocial Sciences
Robert-Paul Juster
Université de Montréal

Elissa Epel
Jue Lin
Aric Prather
Ashley Mason
USSF

Eli Puterman
UBC

Clemens Kirshbaum
Dresden University

Anna Marsland
Rebecca Reed
Pittsburgh University

Suzanne Segerstrom
University of Kentucky

David Almeida
Penn State University

Energy expenditure & metabolism
Marie-Pierre St-Onge
Dympna Gallagher
Michael Rosenbaum
CUIMC Medicine

Chris Kempes
Santa Fe Institute

Herman Pontzer
Duke

Sam Urlacher
Baylor

Brain Neurobiology & Neuroimaging
Phil De Jager
Hans Klein
Vilas Melon
Stephanie Assuras
CUIMC Neurology

Eugene Mosharov
Dave Sulzer
John Mann
Maura Boldrini
Mark Underwood
Gorazd Rosoklija
Andrew Dwork
Chris Anacker
Dani Dumitriu
Catherine Monk
Vincenzo Lauriola
Richard Sloan
Caroline Trumpff
CUIMC Psychiatry

Tor Wager
Dartmouth

Michel Thiebaut de Schotten
CNRS Bordeaux

Manish Saggar
Stanford

Anne Grunewald
University of Luxembourg

Carmen Sandi
EPFL

Biological Aging & SOH
Alan Cohen
Dan Belsky
Julie Herbstman
Linda Fried
John Beard
Nour Makarem
Sen Pei
Dan Malinsky
Ying Wei
Mailman & Columbia Aging Center

Luigi Ferrucci
NIA Intramural

National Institute of Mental Health

National Institute of General Medical Sciences

National Institute on Aging

BASZUCKI
BRAIN RESEARCH FUND

The Nathaniel Wharton Fund