Diseases and Treatments as Aging Accelerators

Anju Nohria, MD, MSc
Director, Cardio-Oncology Program
Dana Farber Cancer Institute/Brigham and Women’s Hospital
Boston, MA
Disclosures

• Research Support – Amgen, Inc.
• Consultant – AstraZeneca, Boehringer Ingelheim, Takeda Oncology
Increasing Cancer Survivorship

CV Disease is the Leading Cause of Non-Cancer Related Death in Cancer Survivors
Cancer Treatment Associated Cardiotoxicity

- **Hypertension**
 - Tyrosine kinase inhibitors (VEGFi), proteosome inhibitors

- **Ischemia**
 - 5-FU/capecitabine, nilotinib, ponatanib, radiation, immunomodulators

- **Ventricular Dysfunction**
 - Anthracyclines, HER-2 blockers, MEK inhibitors, osimertinib, immunotherapy

- **Arrhythmias**
 - Bruton tyrosine kinase inhibitors, cisplatin, crizotinib, immunotherapy, radiation

- **Venous Thrombosis**
 - Tyrosine Kinase Inhibitors, immunomodulators, endocrine therapy
Outline

• Pathophysiology of vascular aging

• Potential mechanisms by which cancer therapies may accelerate vascular aging

• Potential therapeutic targets to mitigate cancer-therapy associated vascular aging
Characteristics of Vascular Aging

• Increased arterial stiffness
 • ↑SBP and pulse pressure
 • LV hypertrophy
 • End-organ damage via ↑ pulsatile flow

• Endothelial dysfunction
 • Impaired vasodilation
 • Thrombosis
 • Inflammation
 • Abnormal mitochondrial function and cellular energy metabolism
Mechanisms of Anthracycline Cardiotoxicity
Doxorubicin Increases Vascular Stiffness
Doxorubicin Promotes Endothelial Dysfunction

Aging and Cancer 2021;2:45-69.
Characteristics of Vascular Aging

- Decreased responsiveness to angiogenic stimuli
- Altered expression of genes regulating angiogenesis
- Microvascular rarefaction → ↓tissue oxygenation → ↓mitochondrial activity → metabolic perturbations → multi-organ dysfunction

VEGF and VEGF Inhibitors in Cancer

Decreased VEGF Signaling Contributes to Vascular Aging
Restoration of VEGF Signaling Promotes Healthy Aging and Longevity

Science 2020; 373:533
Inflammation as Mediator of Cancer and CVD

CANTOS Trial: MI + CRP ≥ 2 mg/L; IL-1β antagonist; Recurrent CV Events

Non-fatal MI, non-fatal stroke or CV death

Incident Lung Cancer

Damage Associated Molecular Patterns and Inflammation

<table>
<thead>
<tr>
<th>DAMP</th>
<th>Cancer type</th>
<th>Treatment</th>
<th>Author(s)</th>
<th>Corresponding PRR(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actin</td>
<td>Lung squamous cell carcinoma/adenocarcinoma</td>
<td>Photodynamic therapy</td>
<td>Tracy et al.</td>
<td>DRIR-1 (CLEC9A)</td>
</tr>
<tr>
<td>Adenosine</td>
<td>Hairy cell leukemia</td>
<td>Pentostatin</td>
<td>Johnston</td>
<td>A1, A2A, A2B, A3</td>
</tr>
<tr>
<td>ATP</td>
<td>Bladder carcinoma</td>
<td>Photodynamic therapy</td>
<td>Garg et al.</td>
<td>P3XO, P3Y2</td>
</tr>
<tr>
<td></td>
<td>Colorectal carcinoma and osteosarcoma</td>
<td>Photodynamic therapy</td>
<td>Michaud et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colorectal carcinoma and sarcoma</td>
<td>Various chemotherapeutic agents</td>
<td>Gharighgihili et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fibroxenoma</td>
<td>Deoxorubicin</td>
<td>Ma et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cutaneous melanoma</td>
<td>Amino acid derivative</td>
<td>Elke et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T-cell leukemia</td>
<td>Ultraviolet light</td>
<td>Elliott et al.</td>
<td></td>
</tr>
<tr>
<td>Calretulin</td>
<td>Bladder carcinoma</td>
<td>Photodynamic therapy</td>
<td>Garg et al.</td>
<td>CD91, scavenger</td>
</tr>
<tr>
<td></td>
<td>Bladder carcinoma</td>
<td>Photodynamic therapy</td>
<td>Garg et al.</td>
<td>receptors: LLEX-1,</td>
</tr>
<tr>
<td></td>
<td>Colorectal carcinoma</td>
<td>Photodynamic therapy</td>
<td>Obeid et al.</td>
<td>SREC-1, and FEEL-1/</td>
</tr>
<tr>
<td></td>
<td>Colorectal carcinoma</td>
<td>Electrohyperthermia</td>
<td>Andocs et al.</td>
<td>CLEVER-1/11</td>
</tr>
<tr>
<td></td>
<td>Colorectal carcinoma and osteosarcoma</td>
<td>Photodynamic therapy</td>
<td>Michaud et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colorectal carcinoma, cutaneous melanoma, lung</td>
<td>Photodynamic therapy</td>
<td>Yamaura et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>carcinoma, esophageal squamous cell carcinoma,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and pancreatic carcinoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cytochrome c</td>
<td>Amino acid derivative</td>
<td>Elke et al.</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Cutaneous melanoma</td>
<td>Photodynamic therapy</td>
<td>Tracy et al.</td>
<td></td>
</tr>
<tr>
<td>HSP60</td>
<td>Lung squamous cell carcinoma/adenocarcinoma</td>
<td>Photodynamic therapy</td>
<td>Kerbelik et al.</td>
<td></td>
</tr>
<tr>
<td>HSP70</td>
<td>Bladder carcinoma</td>
<td>Photodynamic therapy</td>
<td>Garg et al.</td>
<td>CD91, scavenger</td>
</tr>
<tr>
<td></td>
<td>Colorectal carcinoma</td>
<td>Photodynamic therapy</td>
<td>Fang et al.</td>
<td>receptors: LLEX-1,</td>
</tr>
<tr>
<td></td>
<td>Colorectal carcinoma</td>
<td>Photodynamic therapy</td>
<td>Ma et al.</td>
<td>SREC-1, and FEEL-1/</td>
</tr>
<tr>
<td></td>
<td>Lung squamous cell carcinoma/adenocarcinoma</td>
<td>Electrohyperthermia</td>
<td>Tracy et al.</td>
<td>CLEVER-1/11</td>
</tr>
<tr>
<td></td>
<td>Prostate adenocarcinoma</td>
<td>Photodynamic therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSP90</td>
<td>Squamous cell carcinoma</td>
<td>Electrohyperthermia</td>
<td>Kerbelik et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Colorectal carcinoma</td>
<td>Photodynamic therapy</td>
<td>Ma et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lung squamous cell carcinoma/adenocarcinoma</td>
<td>Electrohyperthermia</td>
<td>Tracy et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Myeloma cells</td>
<td>Bortezomib</td>
<td>Spiesik et al.</td>
<td></td>
</tr>
<tr>
<td>GRP78 (BIP)</td>
<td>Squamous cell carcinoma</td>
<td>Photodynamic therapy</td>
<td>Kerbelik et al.</td>
<td></td>
</tr>
<tr>
<td>GPR56 (GRP)</td>
<td>Squamous cell carcinoma</td>
<td>Photodynamic therapy</td>
<td>Kerbelik et al.</td>
<td></td>
</tr>
<tr>
<td>HMGB1</td>
<td>Colorectal carcinoma</td>
<td>Deoxorubicin and meloxic acid</td>
<td>Luo et al.</td>
<td>RAGE, TIM3, TLR2,</td>
</tr>
<tr>
<td></td>
<td>Colorectal carcinoma</td>
<td>Electrohyperthermia</td>
<td>Ma et al.</td>
<td>TLR4, TLR9</td>
</tr>
<tr>
<td></td>
<td>Colorectal carcinoma</td>
<td>Deoxorubicin and meloxic acid</td>
<td>Fang et al.</td>
<td></td>
</tr>
</tbody>
</table>
Potential Therapeutic Targets To Reduce Negative Impact of Oxidative Stress

#### Therapeutics	Description
Mitochondria-targeted compounds
MitoQ | Mitochondria-targeted antioxidant
SS-31 | Mitochondria-targeted peptide
Urollithin-A | Gut microbiome-derived mitophagy activator
Dexrazoxane | Mitochondria DNA damage inhibitor

NAD⁺ boosting compounds
Nicotinamide mononucleotide | NAD⁺ salvage pathway activator
Nicotinamide riboside | NAD⁺ salvage pathway activator

CD-38 inhibitors
Apigenin | Food-derived (flavonoid) CD-38 inhibitor
Daratumumab | Synthetic CD-38 inhibitor
Thiazologuin(az)olin(on)e | Synthetic CD-38 inhibitor

Sirtuin activators
Resveratrol | Food-derived (plant polyphenol) sirtuin activator
SRT1720 | Synthetic sirtuin activator

PARP inhibitors
Nicotinamide | Inhibits PARP and increases NAD⁺ bioavailability
Rucaparib | Inhibits PARP and increases NAD⁺ bioavailability

AMPK activator
AICAR | AMP analog (Increases circulating AMP)

mTOR inhibitor
Rapamycin | Immunosuppressive compounds that inhibit mTOR

PRRI agonists
Calorie restriction, aerobic exercise

Aging and Cancer 2021;2:45-69.
Summary

• Cardiovascular disease is a significant cause of morbidity and mortality in cancer survivors
• Many cancer therapies are associated with cardiotoxicity
• Cancer therapies can lead to increased oxidative stress and inflammation that may promote vascular aging
• A better understanding of these mechanisms is needed to identify therapeutic targets to reduce cancer therapy associated cardiotoxicity and potentially reduce adverse impact on vascular aging