Central Nervous System and Bladder Control

Derek Griffiths University of Pittsburgh (ret)

Disclosures

- Current funding:
 - occasional consulting fees from University of Pittsburgh
- Other financial relationships:
 - occasional consultant for LABORIE
- Conflicts of interest:
 - none

Significance

- Continence implies voluntary control of voiding
- Urgency or urge incontinence is a lack of voluntary control
 - prevalent in old age
 - even with no overt neurological disease
- Voluntary control is exercised from the brain
- Therefore a brain defect could lead to loss of control, manifested as
 - involuntary bladder contractions (detrusor overactivity)
 - involuntary voiding (urge incontinence, UUI).
- The hope:
 - brain imaging will reveal such a brain defect
 - reduction or prevention of the defect will offer an effective mechanism of therapy

State-of-the-art knowledge

- I shall summarize recent knowledge about:
 - mechanism of continence and incontinence in older people
 - mechanism of therapy
- Main body of recent work from Pitt group
 - supported by Ruggieri, Nados, and Khrut
 - other brain imagers
 - have not addressed the same problem
 - or have used animals
 - or have used different measurement routines
- Subjects are mainly older <u>women</u> with or without urge incontinence
 - Gender issue: why only women?
 - no confounding by BPH
 - large number, high prevalence of urge incontinence

Method used at Pitt

- Brain activation provoked by bladder filling
 - measured by fMRI
- Simulated by repetitive infusion and withdrawal into/out of the bladder, while scanning
- Performed with near-empty bladder
 - weak or no sensation
- and with full bladder
 - strong desire to void or urgency
- Note: results are averages for groups, not single subjects

Voiding reflex: our starting point

- Basic voiding reflex is automatic:
 - bladder fills up,
 - afferents increase
 - PAG activity increases
 - reflex is triggered in the PAG
 - bladder empties automatically
- No voluntary control, therefore incontinence
- Voluntary control exercised by other brain regions via PAG
 - see next slide

Voluntary control by "higher" brain regions acting on PAG

Results in age-matched <u>continent females</u> ("normals")

near-empty bladder

full bladder

not much sensation, little activation, some in PAG

strong desire to void, more activation, some in midcingulate

Results for <u>older women with UUI</u> at full bladder, with "urgency"

responders to behavioral treatment

nonresponders

more activation in midcingulate

deactivation in medial frontal brain

• An application of this circuit model ...

An application: white-matter damage in circuit 1

An application: white-matter damage in circuit 1

- Circuit 1 (voluntary control) relies on long white-matter tract from frontal cortex to midbrain PAG
 - appears vulnerable to white-matter disease (WMD)
 - if damaged, reduces inhibitory input to PAG, leading to loss of voluntary control
 - may suggest site of WMD that should be targeted by preventive measures (diet, exercise, e-stim)
 - see next slide

Evidence for white-matter damage in circuit 1

- Kuchel group, in elderly men and women:
 - urge incontinence associated with WMD, especially in cingulum tract (circuit 1)
 - Pitt results are concordant :
 - WM disease in similar tract (anterior thalamic radiation) is correlated with brain responses to bladder filling characteristic of urge incontinence
- Supports idea that WM damage in circuit 1 may contribute causally to urge incontinence
 - point of view championed by Sakakibara

WM tracts: cingulum (Kuchel et al)

- Cingulum is purple tract from front of brain to midbrain = circuit 1
- Implications for treatment ?

A second application of the bladder control model: Toward better treatment

- Biofeedback-assisted pelvic floor muscle training (BFB) for urge incontinence (UUI) can be used
 - as a test of BFB's therapeutic mechanism

hopefully, to improve BFB

- With a protocol like Burgio's we attain approximately 50% reduction of UUI frequency in 50% of older women with UUI
 - enables division into responders (>50% improvement in UUI frequency) and nonresponders (<50% improvement)

Surprising result of BFB treatment

- As mentioned, responders and nonresponders to BFB show completely different brain responses to bladder filling
 - Two phenotypes of urge incontinence?
- Responders use circuit 2 salience network
- Nonresponders use circuit 1 default mode network
 - but there is more ...

Brain activation and deactivation before and after BFB treatment

- Post-BFB, <u>responders</u> tend to change the pattern of activation and deactivation:
- Is this the mechanism of therapy?

Brain activation and deactivation before and after BFB treatment

Baseline

_ Post-BFB

- Post-BFB, <u>nonresponders</u>
 continue to show marked
 deactivation:
- And cannot employ this therapeutic mechanism?

Non-Responders

Different brain effects of BFB therapy

Central Nervous System and Bladder Control

Knowledge gaps:

- Some of results shown are trends, of borderline significance
- Need for better protocol than our current infusion/withdrawal maneuver
- Need to study to other patient groups:
 - men, younger women, neurological disease (e.g. Parkinson's disease)

Central Nervous System and Bladder Control

Research opportunities:

- Use new analysis methods, more sensitive and specific:
 - resting-state or seed-based connectivity
 - diffusion tensor imaging
- Study other therapies (may have surprising results, like BFB different phenotypes?)
 - antimuscarinics (Ruggieri), beta-agonists, botox
 - e-stim (Blok)

Central Nervous System and Bladder Control: Summary

- Much learned about brain/bladder control

 summarized in simple "circuit" model
- Impairment of critical white-matter pathways reduces inhibition and thus contributes to UUI
 - cingulum may be critical
- Brain imaging can suggest mechanism of behavioral therapy
 - surprisingly, suggests phenotypes with different susceptibility to treatment
 - is this true of other therapies?

END