Sleep and Circadian Rhythms in Neurodegenerative Disorders

Erik S. Musiek, MD, PhD
Department of Neurology
Washington University in St. Louis

U13 Bench to Bedside Sleep Conference 2015
Disclosures

• Funding:
 – NINDS (K08)
 – NIA (ADRC Subproject)
 – Alzheimer’s Association New Investigator Research Grant
 – Coins for Alzheimer’s Trust Research Grant
 – Donor’s Cure Foundation New Horizons Grant

• Other financial relationships: none to declare
• Conflicts of interest: none to declare
Significance

• Circadian and sleep disturbances are very common in neurodegenerative diseases and are major causes of morbidity and institutionalization
• Altered circadian function may contribute to “sundowning”, another major cause of morbidity in dementia
• Aside from being a symptom of neurodegenerative disorders, sleep and circadian rhythm disorders may contribute to disease pathogenesis.
• Understanding and potentially treating sleep and circadian dysfunction in neurodegenerative diseases could potentially improve quality of life for patients and caregivers, or perhaps alter disease progression
State of the Art Knowledge

• Myriad sleep/circadian changes in neurodegenerative diseases
 • In AD alone, reports of Increased fragmentation, decreased REM and SWS, increased nighttime waking, increased napping, phase advance

• Many of studies demonstrating sleep and circadian disruption in aging and age-related neurodegenerative disease (AD and PD in particular)

• Emerging studies suggesting sleep/circadian alterations may precede dementia

• Manipulating sleep and the circadian clock has direct impact on neurodegenerative process in mice
Circadian dysfunction is common in neurodegenerative diseases

Hatfield C F et al. Brain 2004

Circadian output declines in aging and AD

Mouse SCN

- Loss of pineal gland clock gene oscillation and melatonin rhythms in AD

- Circadian abnormalities in several strains of APP and PS1/APP transgenic mice

Wu wt al, FASEB, 2006
SCN pathology in aging and AD

- Loss of AVP- and VIP-expressing neurons in SCN in aging and AD
- Tangles but no plaques in SCN

Ying-Hui Wu et al. FASEB J 2006;20:1874-1876
Sleep and circadian alterations may precede dementia

“Older, healthy women with decreased circadian activity rhythm amplitude and robustness, and delayed rhythms have increased odds of developing dementia”
Sleep and circadian alterations may precede dementia II

- Self-reported sleep problems increase risk of subsequent dementia (1yr)
- Cognitively-normal people with biomarkers of Aβ pathology have slightly decreased sleep efficiency

Table 2. Sleep Measures and Nap Characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>All (n = 142)</th>
<th>Aβ42 Level >500 pg/mL (n = 110)</th>
<th>Aβ42 Level ≤500 pg/mL (n = 32)</th>
<th>95% CI of Group Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep efficiency, %</td>
<td>82.9 (6.2)</td>
<td>83.7 (5.6)</td>
<td>80.4 (7.7)</td>
<td>0.8 to 5.7</td>
</tr>
<tr>
<td>Wake time after sleep onset, min</td>
<td>56.1 (22.5)</td>
<td>54.0 (21.8)</td>
<td>63.1 (23.9)</td>
<td>−17.9 to −0.21</td>
</tr>
<tr>
<td>Total sleep time, min</td>
<td>402.6 (44.6)</td>
<td>403.0 (47.3)</td>
<td>401.3 (49.0)</td>
<td>−16.0 to 19.5</td>
</tr>
<tr>
<td>Time in bed, min</td>
<td>486.4 (49.8)</td>
<td>482.3 (47.3)</td>
<td>500.6 (55.8)</td>
<td>−37.9 to 1.23</td>
</tr>
<tr>
<td>Nap days per week (a)</td>
<td>1.4 (1.7)</td>
<td>1.3 (1.6)</td>
<td>1.9 (1.9)</td>
<td>−1.3 to 0.1</td>
</tr>
<tr>
<td>Frequent naps (≥3 d per week), No. (%)</td>
<td>26 (19.4) (a)</td>
<td>16 (14.7) (a)</td>
<td>10 (31.2)</td>
<td>−0.32 to −0.01</td>
</tr>
</tbody>
</table>

Abbreviation: Aβ42, β-amyloid 42.

(a) One participant was missing sleep diary nap data.
Amyloid-β levels shows circadian oscillation in brain ISF

- Diurnal variation in Aβ levels in ISF by microdialysis
- Aβ increases during dark (waking) and decreases during light (sleep)
- Aβ in human CSF shows a similar oscillatory pattern
- Is this controlled by the clock?

Manipulating sleep-wake impacts Aβ pathology in mice

- Sleep deprivation increases, while orexin antagonists or orexin gene deletion decreases Aβ plaque burden in PS1/APP mice.

Kang et al, Science 2009
The canonical circadian system

Bmal1 deletion causes astrogliosis throughout the brain

Musiek et al., J Clin Invest, 2013
Neuronal injury and oxidative stress in Bmal1 KO cortex

Synaptic degeneration

- A, B: Comparison of synaptic degeneration in WT and Bmal1 KO cortex.
- C, D: Further detailed images showing synaptic structures in WT and Bmal1 KO conditions.

Impaired functional connectivity

- Graph showing impaired connectivity in different brain regions (Cing, Sens, Retro, Vis) comparing WT and Bmal1 KO conditions.

Oxidative stress

- LV-scrambled vs. LV-shBMAL1 models in con and H2O2 conditions showing changes in cellular morphology.
Gaps in Knowledge

• What is the role of sleep/circadian dysfunction in early/presymptomatic-stages of neurodegenerative diseases?
• Is the root cause degeneration of circadian systems (SCN, peripheral oscillators) or sleep circuitry?
 • What happens to core clock function?
• What pathogenic mechanisms cause degeneration of sleep and circadian nuclei?
• Can a broken clock be fixed? Behaviorally (light, melatonin) or pharmacologically?
• Are sleep or circadian systems legitimate therapeutic targets to prevent or forestall neurodegenerative diseases?
Research Opportunities

• Clinical/Translational:
 – Characterizing sleep and circadian abnormalities in early AD or PD in relationship to other biomarkers of disease
 – Going beyond actigraphy- developing new methods for monitoring sleep/circadian function in human populations
 – Intervention studies: impact of sleep deprivation or orexin antagonists on cognition, pathologic endpoints
Research Opportunities

• Basic:
 – Develop animal model of sundowning: what is the cellular/molecular basis?
 – Molecular mechanisms connecting sleep disruption to Aβ pathology
 – Dissecting the impact of sleep/circadian dysregulation on other neurodegenerative pathways and neural function in general
 – Many, many other directions!
Questions?