The Economist

DECEMBER 13TH-19TH 2003

Gore anoints Dean

America's Taiwan test

TUFTS

HNRCA

Healthy Aging

JEAN MAYER USDA HUMAN NUTRITIO

RESEARCH CENTER ON AGING

THROUGH NUTRITIO

The future of flight

A SURVEY OF FOOD

The shape of things to come

www.economist.com

SEX & LIES: A GOVERNOR'S GAY AFFAIR DECEMBER OF STATES OF THE STATES OF

When FA Attacks

How Fat Cells Are Waging War on Your Health Why Dieting Is No Magic Bullet

Ital rendgring of a human tat cell

Coincidence of Macrophage Infiltration into White Adipose Tissue and Onset of Hyperinsulinemia During Diet-Induced Obesity

(After: Xu et al, 2003 JCI vol.112)

F4/80+ Cells are the Predominant Source of TNF

Weisberg JCI, 2003. Vol 112

Macrophages infiltrate adipose tissue

Macrophage infiltration is associated with insulin resistance

Level of macrophage infiltration correlates with cell size

Increased activated macrophages in obese versus lean

Why does macrophage infiltration increase with obesity?

Is there a physiologic function for macrophages in adipose tissue?

Can histological studies assist us in our understanding?

The preponderance of $M\Phi$ in white adipose tissue of lean and obese mice are arranged in "crown-like structures" (CLS) surrounding what appear to be functional adipocytes.

The frequency of these macrophage aggregations increases \sim 30-fold in obese (*db/db*) vs lean mice.

Cinti et.al., J Lipid Res 2005. 16:2347-2355

These aggregated MΦ form syncitia that progress to multinucleate giant cells (MGC), a hallmark of chronic inflammation.

MAC2 Immunostaining

H&E

Do macrophages form CLS around adipocytes or another structure ?

Electron microscopic studies revealed the histology of the CLS Electron microscopy reveals that these $M\Phi$ aggregations form exclusively around the 'free' lipid droplet (L) of dead adipocytes.

Cinti et.al., J Lipid Res 2005. 16:2347-2355

Anti-TNF α

Anti-TNF α + competitive peptide con

Immunohistochemical localization of TNF α in EWAT of 8 week old db/db mouse

Higher magnification of NCrown Like StructureÓshown above left

Correlation between CLS Formation and Cytokine Production

High Fat Feeding Increases Body Weight in Mice

Progressive Adipocyte Death with High Fat Feeding in Intrabdominal Adipose Tissue Starting at 8 weeks

Pattern of Macrophage Markers with HFD Increased CD11c

week of HF diet

Increased Cytokine Production with HFD Parallels Adipocyte Death and Macrophage Infiltration

week of HF diet

Adipocyte Death Correlates with Adipose Tissue Inflammation

Estrogen regulation of adiposity; *in vivo* and *in vitro* effects on adipose tissue and muscle metabolism

Estrogen

(Mendelson et al. Science 2005)

- Dominant form is 17β-estradiol; also estrone and estriol
- Synthesized mainly in ovaries (in women), also some synthesis in other tissues in both men and women
- Enzyme AROMATASE converts testosterone to 17βestradiol

Women's Health Initiative

15,641 post-menopausal women

Randomized to estrogen, estrogen plus progesterone, or placebo

■ 5+ year follow-up

Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women's Health Initiative Hormone Trial

K. L. Margolis^{1,9} · D. E. Bonds² · R. J. Rodabough³ · L. Tinker³ · L. S. Phillips⁴ · C. Allen⁵ · T. Bassford⁶ · G. Burke² · J. Torrens⁷ · B. V. Howard⁸ · for the Women's Health Initiative Investigators

(Margolis et al Diabetologia 2004)

Women randomized to HRT

- Lower BMI
- Lower waist : hip ratio
- Lower blood glucose
- Lower insulin
- Greater insulin sensitivity

Comparison of Sham vs Ovariectomized Mice

Model: Ovariectomized Mouse

Experimental Outcome Variables:

- 1. Whole body physiology
 - Food intake, body weight, insulin resistance
 - Energy expenditure, activity levels
- 2. Adipose tissue mass and cell size
 - Intra-abdominal (perigonadal)
 - Subcutaneous (inguinal)
- 3. QPCR, etc

Operations

- Muscle (fat oxidation, fiber type)
- Adipose tissue (inflammation)
- Liver (lipogenesis/inflammation)

Physiological measurements of female shamovariectomized (SHAM) and ovariectomized (OVX) mice 12 weeks post-operation

Variable	SHAM	OVX
Body weight (g)	22.8 <u>+</u> 0.1	27.5 <u>+</u> 0.1*
Uterine weight (g)	0.081 <u>+</u> 0.008	0.040 <u>+</u> 0.008*
Plasma estradiol (pmol/l)	305.9 <u>+</u> 176	12.3 <u>+</u> 6*
Glucose ¹ (mmol/l)	5.8 <u>+</u> 0.26	7.4 <u>+</u> 0.42*
Insulin ¹ (pmol/l)	145.3 <u>+</u> 23.4	207.8 <u>+</u> 47.4
Triglycerides ¹ (mmol/l)	0.34 <u>+</u> 0.04	0.34 <u>+</u> 0.03
NEFA ² (mmol/l)	0.66 <u>+</u> 0.17	0.49 <u>+</u> 0.10

¹Plasma measures determined after an 8 hour fast. N \geq 7, *P \leq 0.05.

²Non-esterified fatty acids

Time course of Body Weight and Food Intake

Adipose Depot Weights and Cell Size

Role of Ovarian Hormones in Regulating Inflammation

Obesity is associated with increased inflammation in several tissues

Is there increased inflammation with loss of ovarian hormones?

Increased inflammation in both intrabdominal and subcutaneous adipose depots

<u>Summary</u>

Increased inflammation with ovariectomy Both intradominal and subcutaneous depots are inflammed Increased infiltration of T Cells and increased expression of interferon gamma In liver increased inflammation along with increased Lipogenic genes

	F4/80 , CD11 b	CD11c	CD3	MCP1, osteoponti n	RANTES	ΤΝΓα	IL-6, IL- 1β	IFNγ	IL-10
Perigonad	a/ 1	$\uparrow\uparrow$	1	1	1	$\uparrow\uparrow$	↑ ,↑	1	\leftrightarrow
Subcutane s	<i>bu</i>	1	\leftrightarrow	$\uparrow\uparrow$	Ļ	1	↑, ↔	\leftrightarrow	\leftrightarrow

Increased Fat Accumulation and Inflammation in Liver

Loss of Ovarian Hormones Promotes Both Obesity and Inflammation

Acknowledgements

Martin Obin

Tara D'Eon

Nicole Rogers

- Sandra Souza
- James Perfield
- Katherine Strissel
- Hideaki Miyoshi

- Michael Mendelsohn
- Richard Karas MD PhD
- Mark Aronovitz

Susan Fried

Estrogen decreases adiposity in rodents

- Numerous studies demonstrate ovariectomy increases body fat which can be prevented by estrogen treatment.
- Little is know about the mechanism.

HOWEVER, STUDIES ARE CONFOUNDED

There's approximately a 20% difference in food intake between ovariectomized (OVX) and OVX-estrogen treated mice

Estrogen regulation of adiposity in ovariectomized pairfed mice

AIMS

- To determine if chronic estrogen regulates adiposity in mice when food intake is carefully controlled
- To elucidate metabolic and molecular mechanism by which E2 regulates adiposity

D'Eon TM, Souza SC, Aronovitz M, Obin MS, Fried SK, Greenberg AS: Estrogen regulation of adiposity and fuel partitioning: Evidence of genomic and non-genomic regulation of lipogenic and oxidative pathways. *J Biol Chem*, 2005

Study Design

- C57 BI/6 mice were ovariectomized
- Allowed 7 days to recover
- Randomized to placebo (OVX-C) or estrogen (OVX-E2) subcutaneous implant pellets (n=4-5/group)
- Pairfed daily for 40 days
- Fasted overnight

OVX-E2 mice had lower body fat

Estrogen downregulates lipogenic gene expression in

Cultured Human Adipocytes

C
10nM E2
ICI 182 780

PPAR-δ PPAR-δ ↑ LPL expression

E2

↑ ligands for PPAR-δ activation

PPAR-δ regulated genes upregulated by E2

-PDHK (20-fold increase)

 increases fat oxidation by reducing glucose derived Acetyl CoA

-ACOX (10-fold increase)

-Involved in β-oxidation

-UCP2, UCP 3 (3-fold increase)

- increase energy consumption

OVX mice have decreased expression of type I oxidative fiber markers in skeletal muscle (quadriceps).

© Cartoonbank.com

YOUR LOST WEIGHT

"Ready to bead back?"

Summary

- Estrogen reduces adiposity in pairfed mice
- Estrogen treatment is related to smaller adipocytes and better regulation of lipolysis (lower basal and higher stimulated lipolysis)
- E2-induced genomic changes potentially contributing to reduced adiposity include:
 - Decreased expression of lipogenic-related genes (SREBP-1c pathway)
 - Increased expression in PPAR-δ and downstream targets involved in oxidative metabolism

Acknowledgements

- Tara D'Eon Nicole Rogers Martin Obin
- Sandra Souza
- James Perfield
- Katherine Strissel
- Hideaki Miyoshi
- Brooke Hussain
- Victoria Viera
- Michael Mendelsohn
- Richard Karas
- Mark Aronovitz
- **Atkins Research Coalition**
- Sam Klein
- Sharon Wardlaw
- Jay Horton
- Mike Goran
- Charles Burant

- Laurie Goodyear Carole Wiltzck Michael Hirschmann
- Susan Fried
 Paul Pilch
 Neal Ruderman
 James Kirkland
 Tamara Pirtskhalava
- Steve SmithDeb Clegg
- Funding:
 NIDDK
 ADA
 USDA
 Atkins Foundation

Fiber Type and Gender ➢ Female muscle Greater relative type I oxidative fiber area Consistent with protection against insulin resistance and diabetes > Male muscle Greater relative type II glycolytic fiber area Despite these gender differences, effects of ovarian hormones on fiber type, and any relationship this may have to menopauseassociated disease risk, is unknown.

