

Susan Harris, D.Sc.

Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University

Boston, MA

Renal 1,25(OH)₂D Production 25(OH)D 1,25(OH)₂D active form

Vitamin D and Inflammation: Cell and Animal Studies

Good evidence that 1,25(OH)₂D contributes to regulating the immune response and inflammation

- VDR in immune system cells and 1,25(OH)D₂ hydroxylase in dendritic cells and macrophages suggest autocrine/paracrine actions at site of inflammation
- cell culture evidence suggests that 1,25(OH)₂D can down regulate production of pro-inflammatory cytokines by immune cells
- VDR KO mice develop chronic inflammation in GI tract

Yu et al. PNAS 105:20834-20839, 2008 Flores M. Nutr Res Rev 18:175-82, 2005 Cantorna et al AJCN 2004; Mahon et al J. Cell Bio 2003; Zitterman Brit J Nutr 2003

Vitamin D and Inflammation: Human Studies

- Much less direct evidence in human studies
- <u>Extensive</u> evidence from observational studies that vitamin D influences risk for conditions having an inflammatory component
- BUT uncontrolled confounding is a possibility because many third factors are associated with both vitamin D levels and disease risk, e.g. obesity, time spent outside, age
- Limited and often flawed trial data

Evidence from Human Studies of Vitamin D Associations with Autoimmune and Inflammatory Conditions

- multiple sclerosis
- rheumatoid arthritis
- inflammatory bowel disease
- Crohn's disease
- systemic lupus erythematosus
- periodontal disease
- hypertension/arteriosclerosis/other CVD
- type 2 diabetes mellitus

Changes in Markers of Inflammation

Timms PM et al., Q J Med 95:787, 2002

- 38 vitamin D deficient Bangladeshi-British adults age 35-65
- 25(OH)D pre: 8.6 ng/ml (21 nmol/l) post: 14.1 ng/ml (35 nmol/l)
- 1 year supplementation with 3-monthly vitamin D injection
- no control group
- (n=24-38)

Inflammatory Bowel Disease

Retrospective study in 504 patients with inflammatory bowel disease

50% deficient, 11% severely deficient

In Crohn's disease and ulcerative colitis, vitamin D deficiency associated with higher disease activity and poorer quality of life.

Presented by A. Ulitsky at 2009 meeting of the American College of Gastroenterology

PERIODONTAL DISEASE: Adj. B (mm) for Periodontal Attachment Loss by Quintile of 25(OH)D (relative to Q5) NHANES III

Risk of CVD and Non-CVD Mortality by 25(OH)D

linked to mortality files 3408 adults age 65+ followed median 7.3 years

NHANES III

Ginde AA et al., JAGS 57:1595, 2009

Women's Health Initiative¹

36,282 women age 50-79

randomized to placebo or 1000 mg/d Ca + 400 IU/d D3

followed for 7 years

Lappe et al.² estimate 25(OH)D increase to have been \approx 2 ng/ml

¹Margolis KL et al., Hypertension 52:847-55, 2008.

²Lappe JM, et al., Am J Clin Nutr 85:1586-91, 2007.

R Scragg, Diab Care 27:2813, 2004

Cumulative Incidence of Diabetes

Women's Health Initiative

33,951 women age 50-79

randomized to placebo or 1000 mg/d Ca + 400 IU/d D3

followed for 7 years

Per-protocol results above. ITT results, P=0.72

de Boer et al., Diabetes Care 31:701-7, 2008.

The Association of Vitamin D with Physical and Cognitive Function

good evidence from observational studies and some trials

• effects may be due to actions of vitamin D that are independent of its anti-inflammatory role

Prevalence of Dementia, AD, and Stroke by 25(OH)D Status

Patient Populations

- Few studies except in chronic kidney disease
- Many effects may be <u>more</u> pronounced in patient populations due to
 - more profound D deficiency
 - potential need for greater 25(OH)D substrate

Vitamin D in Chronic Kidney Disease

- 1,25(OH)₂D declines in kidney disease due to reduced renal mass for conversion of 25(OH)D and also because of increased fibroblast growth factor-23
 - Gal-Moscovici, J Bon Miner Res, 22:V91, 2007
- Large observational studies demonstrate reduced mortality with administration of 1,25(OH)₂D or analogs
 - Kovesdy Arch Int Med 168:397, 2008
 - Tentori, Kidney Int 70:1858, 2006
- It may also be desirable to supplement these patients with 25(OH)D as substrate for autocrine/paracrine functions – this has received much less research attention

Association of Calcitriol Treatment with Mortality in CKD

520 male US veterans, mean age 69.8

CKD stage 3-5, not yet receiving dialysis

Figure 2. Kaplan-Meier curves for all-cause mortality, comparing calcitriol-treated vs untreated patients.

Kovesdy CP, Arch Intern Med 168:397, 2008

Hypothesis	Evidence from Observational Studies	Evidence from Vitamin D Intervention Studies
Vitamin D affects immune response and inflammation in cells, animals		strong – many, varied studies
Vitamin D affects markers of inflammation in human studies	limited – few studies	limited – few studies
Vitamin D affects markers/precursors for diseases with inflammatory component	moderate – many studies, some large	limited – few studies, most small
Vitamin D affects prevalence/incidence of diseases with inflammatory component	moderate – many studies, some large	limited except for bone & falls
Vitamin D affects patient survival	good for CKD patients, otherwise limited	very limited to non- existent

UNIVERSITY

Ongoing Trials

Trials of vitamin D supplementation in older adults are now underway to look at effects on

- Cardiovascular Disease
 - Hypertension
 - Hypercholesterolemia
 - Metabolic Syndrome
- Type 2 Diabetes Mellitus
 - Insulin Resistance
 - Glucose Intolerance
- Systemic Lupus Erythematosus
- Asthma
- Chronic Obstructive Pulmonary Disease

Clinicaltrials.gov

Considerations for Future Intervention Studies

- Lack of effect in prior studies may often have been due to inclusion of subjects with relatively high baseline 25(OH)D – focus should be on those with known or suspected deficiency
- Lack of effect also results from inadequate 25(OH)D step up critical to chose high enough dose and attain high adherence rates
- Frail, ill elderly are the most likely to benefit but have been little studied except with respect to bone and falls

Multiple Sclerosis Risk

Vitamin D levels (nmol/L)	OR (95% CI)
15.2 – 63.2	1.0
63.3 – 75.3	0.57 (0.30-1.07)
75.4 – 84.8	0.57 (0.30-1.07)
84.9 – 99.1	0.74 (0.40-1.36)
99.2 – 152.9	0.38 (0.19-0.75)*

White men & women only. Black & Hispanic: not significant (potentially due to lower numbers of cases).

Case Control: 148 cases, 296 controls *P = .006

Munger KL et al. JAMA 2006.

RCT: Calcium, Vitamin D and Cancer Incidence

Lappe JM et al., Am J Clin Nutr 2007:1586

Meta-Analysis of Vitamin D and Falls

Bischoff-Ferrari, Dawson-Hughes. JAMA 2004.

Iowa Women's Health Study: Adj. RR of Rheumatoid Arthritis

Merlino LA et al., Arthritis and Rheumatism 50:72, 2004

Health Professionals Follow-Up Study

Adj. RR of Myocardial Infarction

Giovannucci et al, Arch Int Med 2008

Falls

- Considerable trial data supports protective effect of vitamin D supplementation ≥ 800 IU/d on falls in elderly
 - Bischoff-Ferrari JAMA 293:2257, 2005 (metaanalysis)
 - Broe JAGS 55:234, 2007
- No effect seen in some large, wellconducted studies possibly due to
 - low baseline risk of falls
 - small 25(OH)D step-up due to high starting value, low dose or poor compliance (e.g. RECORD Trial: Grant, Lancet 365:1621, 2005)

Obesity and Vitamin D Status

NHANES III: Time to Stand Oraninooran time to stand [s] 15 -14 -) 100 120 140 16 serum 25(OH)D [nmol/l] 48 ng/ml Ó

Bischoff-Ferrari, Dawson-Hughes. Am J Clin Nutr 2004;80:752-8.