

The Impact of Cognitive Impairment: An Overview U13 GEMSSTAR Conference March 25th - 27th, 2018 Bethesda, Maryland

John C. Morris, MD

Harvey A. and Dorismae Hacker Friedman Distinguished Professor of Neurology

WASHINGTON UNIVERSITY ST. LOUIS

Disclosure Statement (2017-2018)

Sources of Research Support

- 1. National Institute on Aging (P50 AG05681; P01 AG03991; P01 AG026276; UF1 AG032438)
- 2. Anonymous Foundation
- 3. Alzheimer's Association
- 4. Barnes-Jewish Hospital Foundation
- Consulting Relationships1. Lilly USA
 - Industry-Sponsored Trials
 - 1. Eli Lilly
 - 2. Biogen
 - 3. Janssen

Fees > \$10,000

None

- Stock Equity
 None
- Speaker's Bureaus
 None
- Editorial Boards
 - 1. Neurology Now

Knight ADRC Faculty and Staff

45 Faculty, 85 Staff in 20 departments/schools And – thanks to all of our >900 dedicated volunteer participants!

Cognitive Impairment

- Only acquired impairment addressed here
- Many causes and forms
 - e.g., traumatic brain injury/chronic traumatic encephalopathy
 - Delirium
- Focus here is on age-associated neurodegenerative dementing disorders, by far the leading causes of cognitive impairment
 - These disorders cause incipient cognitive impairment that has several names (subjective cognitive decline; mild cognitive impairment; prodromal dementia) but inevitably result in progressive impairment (dementia)
 - Distinguishing MCI from Alzheimer dementia is inherently artificial as both are part of a continuum: process of continuous synaptic/neuronal loss
 - Strive for an etiologic diagnosis

Societal and Economic Consequences of Relentless Aging – I.

Population aging: emblem of prosperity and progress

- Baby boomers (b: 1946-1964) provided both workers and consumers, fueling economic growth; first baby boomers turned 65 in 2011
- Aging is a slow-moving but inexorable process that will profoundly challenge established economic patterns

 Longer lifespans result from decreased infant mortality and progress treating diseases

- 1 out of every 7 Americans now is 65 or older; by 2030 it will be more than 1 out of every 5 and will soon outnumber those 18 and younger
- Lower birthrates in developed societies (e.g., China's one-child policy) shrink working age population
- Now 4 European workers labor to support 1 retiree; by 2050, fewer than 2 workers per retiree will be available

Societal and Economic Consequences of Relentless Aging – II.

Longevity risk

- Under current policies, entitlement programs for elderly Americans, soon will be bankrupt; proposed changes in Social Security and Medicare are stymied by partisan politics
- Lifespan increases strain corporate and governmental pension fund obligations (many already underfunded); a cure for heart disease, cancer, or Alzheimer disease would have catastrophic consequences

Changes will be unpopular

- Trade leisure for work (already, 20% of persons 65+ are working)
- Decrease consumption in favor of savings

Young and Growing Vs. Aging and Stable

Roberts L. <u>Science</u> 2011; 333:540-543

National Population: Notice the increase in the elderly as baby-boomers age

Source: U.S. Census Bureau

Age Effect in Medical Scholarship

- Medical Student: Reads entire article, doesn't understand any of it
- Resident: Would like to read article, eats dinner instead
- Attending: Reads entire article to pimp students
- Chief of Service: Reads references to see if he/she was cited
- Emeritus Professor: Reads entire article, doesn't understand any of it

Adapted from Bennett HJ, JAMA 1992; 267:920

Cognitive Function in Truly Healthy Aging

- "Diseases commonly occurring in the elderly play a substantial role in the cognitive and functional decline often attributed solely to aging." (Howieson DB et al, Neurology, 1993)
- Hypotheses
 - Longitudinal cognitive performance is relatively stable in unimpaired elderly
 - Cognitive decline is a marker for disease

Longitudinal Change in Global and Domain-specific Factor Scores in Older Adults Who Begin as Cognitively Normal

Inclusion of asymptomatic persons with preclinical AD negatively biases norms for cognitive performance in truly healthy aging

- Means and cutpoints to detect impairment are too low
- Reliance on test norms to detect the earliest stages of Alzheimer dementia is ineffective because of insensitivity

Storandt M, Morris JC, Arch Neurol 2010;67:1364-1369

IIII Dementia

- Definition: An acquired syndrome of decline in memory and other cognitive domains sufficient to affect daily function
- Etiology: Any disorder that damages higher-order brain regions that are responsible for cognition; etiology often is multifactorial

Detection:

- Intra-individual change: Informant observations about decline in previously established cognitive and functional abilities
- Inter-individual differences: Cognitive test performance compared with age- and education-matched norms

Intraindividual Decline, Not Test Score, Marks Alzheimer Dementia

Clues to Differential Diagnosis

The Growth

Alzheimer's prevalence in the U.S., by age, 1997

Knight ADRC View of AD

 "Alzheimer disease" (AD) refers to the neurodegenerative brain disorder, regardless of clinical status, representing a continuous process of synaptic and neuronal deterioration

AD has two major stages:

- Preclinical (presymptomatic; asymptomatic), undetectable by current clinical methods
- Symptomatic (clinical)
- Symptomatic AD is defined by intraindividual cognitive decline, from subtle to severe, that interfers with daily function, and can be subclassified on symptom severity:
 - Incipient (prodromal; mild cognitive impairment)
 - Dementia

Morris JC, Arch Neurol 2012; 69: 700-708.

Alzheimer Facts

- 10% of people 65 and older have AD dementia
 - 2/3 are women
 - African Americans and Hispanics have 1.5-2 times the risk of AD
- Only major cause of death in US for which there is no prevention or effective treatment
- >80% of caregiving comes from family members
- Direct costs of caring for persons with Alzheimer dementia total \$277 billion (\$186 billion in Medicare and Medicaid payments)

Alzheimer's Association, 2018

CDR 0_____

Insidious onset

(normal)

"Forgetful"; repetitious; impaired decisional abilities; independent in self-care; looks and acts "normal", can perform some IADLs but often impaired to some degree Only highly learned material recalled; little or no pretense of IADLs; disruptive behaviors; supervised BADLs

Oriented only to self; requires full care for BADLs; akinetic mutism

Course of Dementia

7-10 yr

Failure of AD Candidate Therapeutics

Agent	Target/Mechanism	Outcome	
Non-Aβ			
Atorvastatin; Simvastatin	Cholesterol (HMG CoA reductase inhibitor) Negative		
NSAIDs	Inflammation Negative		
Rosiglitazone	Insulin (PPAR gamma agonist) Negative		
Latrepirdine	Mitochondrial function	Negative	
Encenicline	α7 nAChR agonist	Negative (AEs)	
Intepiridine	5-HT6 antagonist	Negative	
Αβ			
AN1792	Amyloid immunoRx	Negative (AEs)	
Tramiprosate	Amyloid aggregation	Negative	
Tarenflurbil	Gamma secretase	Negative	
Semagacestat; Avagacestat	Gamma secretase	Negative	
Bapineuzumab	Amyloid immunoRx	Negative	
Solanezumab	Amyloid immunoRx	Negative (+/-)	
Crenezumab	Amyloid immunoRx	Negative	
Gantenerumab	Amyloid immunoRx	Negative	
IVIG	Nonselective immunoRx	Negative	
LY2886721	Beta secretase	AEs	
ACC-001	Amyloid immunoRx	Negative	

Possible Reasons for Failed Trials

- Ineffective drug
- Wrong target
- Initiate too late

AD rarely occurs in isolation; frequent comorbidities include vasculopathy (including infarcts), synucleinopathy, other proteinopathies (e.g., TDP-43), inflammation, oxidative stress, etc. – rather than monotherapy, likely need combination therapy that addresses multiple targets

Preclinical and Symptomatic AD

filiated Grants		
Cores		
Administration Morris/Bateman		
Clinical & AA Outreach Morris		
Biostatistics Xiong		
Neuropathology Perrin/Cairns		
lmaging Benzinger		
Gen <mark>etics</mark> Cruchag <mark>a/Goate</mark>		
utreach, Recruitment, ducation & Rural Core Denny		
Biomarker Fagan		
Informatics Marcus		

Knight Alzheimer's Disease Research Center JC Morris, PI (P50 AG05681) 5-1-15 to 4-30-20 (since 1985) Project 1: Correlation of Tau PET Imaging with CSF **AD Biomarkers** Fagan Project 2: Synergy of Aβ Clearance Mechanisms in vivo Cirrito Project 3: Circadian Rhythms in Regulation of Aβ Pathology and Brain Oxidative Stress Musiek Other affiliations: NACC, NCRAD, LOAD, ADCS, ADNI, GWAS, Alzheimer's Assn, AAA Board, NIH & Industry Clinical Trials, affiliated R01 & other grants

Dominantly Inherited Alzheimer Network (DIAN) RJ Bateman, PI (UF1 AG032438) 7-16-14 to 12-31-19 (since 2008)

USA Brigham & Women's Hospital/MGH			
Butler H/Brown	U	Columbia U	
Indiana U	USC	U Pittsburgh	
Mayo Clinic – Jacksonville		Washington U	
United Kingdom	_	ION-UC London	
<u>Australia</u>	Edith	Cowan U – Perth	
	U New South	h Wales – Sydney	
<u>Germany</u>		Univ Tübingen	
Ludwig-Maximillians-Unverstät – Munich			
Argentina Inst Neurol Research – Buenos Aires			
Japan Osal	ka City Univ	Hirosaki Univ	
Niiga	ata Univ	Univ Tokyo	
Korea	Asa	n Medical Center	

Knight ADRC

 Cross-disciplinary to answer a broad range of scientific questions

 Faculty from WUSM Departments/Divisions (Neurology, Neurosurgery, Psychiatry, Pathology & Immunology, Radiology, Medicine/Geriatrics, Biostatistics, Ophthalmology, Occupational Therapy, Physical Therapy, Emergency Medicine, Anesthesiology, Biochemistry & Biophysics, and Neuroscience) AND from Schools on Danforth Campus (Law, Social Work, Engineering, and Arts and Sciences: Departments of Chemistry, Political Science, and Psychology)

Multi-institutional

NACC/ADC Network

DIAN Sites

Knight ADRC Interdisciplinary Research

PERIOPERATIVE MEDICINE

Anesthesiology 2009; 111:963-9

Copyright © 2009, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

Long-term Cognitive Decline in Older Subjects Was Not Attributable to Noncardiac Surgery or Major Illness

Michael S. Avidan, M.B.B.Ch., F.C.A.S.A.,* Adam C. Searleman, B.S.,† Martha Storandt, Ph.D.,‡ Kara Barnett, M.D., Andrea Vannucci, M.D., Leif Saager, M.D.,# Chengjie Xiong, Ph.D.,** Elizabeth A. Grant, Ph.D.,†† Dagmar Kaiser, M.D.,‡‡ John C. Morris, M.D.,§§ Alex S. Evers, M.D.

 Cognitive trajectories in older adults were not affected by non-cardiac surgery

Knight ADRC Interdisciplinary Research

Four Sensitive Screening Tools to Detect Cognitive Dysfunction in Geriatric Emergency Department Patients: Brief Alzheimer's Screen, Short Blessed Test, Ottawa 3DY, and the Caregiver-completed AD8

Christopher R. Carpenter, MD, MS, Elizabeth R. Bassett, Grant M. Fischer, Jonathan Shirshekan, James E. Galvin, MD, MPH, and John C. Morris, MD

ACADEMIC EMERGENCY MEDICINE 2011; 18:374–384 © 2011 by the Society for Academic Emergency Medicine

Dementia often unrecognized (~50% of persons with AD dementia in US are undiagnosed)

- Needs to be identified in emergency departments to reduce recidivism and institutionalization
- Four sensitive screening tools

Current NIA Funding Opportunity Announcements in Alzheimer Disease and Related Dementias

- RFA-AG-18-028 Pragmatic Trials of Managing Multimorbidity in AD
 - "[persons] with dementia... average four additional chronic medical disorders"
 - Examples: hypertension, diabetes, heart disease, obstructive lung disease, incontinence, and hip fracture
 - Develop effective treatment for comorbid conditions that occur in dementia
- RFA-AG-18-029 Interdisciplinary Research to Understand the Complex Biology of Resilience to AD Risk
 - AD is heterogeneous with a "multifactorial etiology"
 - What are the molecular drivers of successful brain aging and cognitive resilience that can inform prevention strategies?

Current NIH FOAs (cont'd)

- PAR-17-031 Role of Age-Associated Metabolic Changes in AD
- PAR-17-029 Dynamic Interactions between Systemic or Non-Neuronal Systems and the Brain in Aging and AD
- PAR-18-587 Assistive Technology for Persons with AD and Related Dementias and Their Caregivers
- PAR-18-185 Development of Socially Assistive Robots to Engage Persons with AD and Related Disorders
- PAR-18-497 Sleep Disorders and Circadian Clock Disruption in AD and Other Dementias of Aging
- PAR-18-519 Sensory and Motor System Changes as Predictors of Preclinical AD

Conclusions

 Relentless aging will result in the public health crisis of cognitive impairment/dementia

- \$277 billion a year spent caring for AD dementia alone
- Remarkable advances in AD, but nonetheless the full understanding of this complex disorder is far from complete
 - No effective therapies or preventions

 Inter-disciplinary approaches are needed to solve the complexities of AD and other causes of cognitive impairment