Progress and Opportunities for Pharmacological Treatments

Karl-Erik Andersson, MD, PhØ

Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina,

Disclosures

- Current funding: NIH
- Other financial relationships: Consultant/Advisory board: Allergan, Astellas, Bayer, Ferring
- Conflicts of interest: None

Progress and Opportunities for Pharmacological Treatments

Focus on:

Significance State-of-the-Art-Knowledge Knowledge Gaps Research Opportunities Progress and Opportunities for Pharmacological Treatments

Outline

What is available? What do we want?

What is promising?

- advantages
- limitations

What is available?

- Antimuscarinics block muscarinic receptors, efficacious but adverse effects, still a first line pharmacological therapy
- β₃–AR agonists (mirabegron) relax the bladder, efficacious, fewer adverse effects than antimuscarinics, first line alternative pharmacological therapy Knowledge gap: long term data
- Phosphodiesterase-5 inhibitors (tadalafil) improve male LUTS, mechanism unclear. Do they work in women?
 Research opportunity
- Onabotulinumtoxin A inhibits transmitter release from nerves (afferent and motor) and urothelium, efficacious but second line pharmacological therapy

What Do We Want?

OAB is multifactorial

– is it possible to find a drug that improves everybody?Knowledge gap: mechanistic studies

OAB is a filling disorder

- is there a common mechanism that can be targeted? Knowledge gap: mechanistic studies

OAB is a "benign" disorder – adverse effects must be few and mild

OAB – Pathophysiology

Both the overactive bladder (OAB) syndrome and detrusor overactivity (DO) are multifactorial disorders

Are multiple, separate pathways involved, each contributing to the disorder ? *Knowledge gap: mechanistic studies*

Do all pathophysiologies have a common pathway? *Knowledge gap: mechanistic studies*

OAB – Suggested Underlying Mechanisms

Uroepithelial factor: Sensor moleculars: ACh, ATP, NGF, TRPV1

Myogenic factor:

Detrusor spontaneous contraction Hypersensitivity to incoming signals

Neurogenic factor:

Abnormal afferent excitability Abnormal sensory process

Specific factor:

Bladder outflow obstruction Metabolic syndrome and diabetes mellitus Inflammation

Meng et al., LUTS ;2012: 4:38-55

Pathophysiology of LUTS/DO/OAB

Pathophysiology of LUTS/DO/OAB

Pathophysiology of LUTS/DO/OAB

OAB – Targets for Drug Treatment

Levels of intervention

Bladder: factors and structures in the bladder wall

Afferent nerves: Afferent signaling from the bladder

CNS: Central handling of afferent information

Bladder: Efferent neurotransmission

Targets and Drugs: Research Opportunities

- Purinergic receptors Antagonists
- **Cannabinoid system -** Agonists Antagonists Inhibitors
- TRP channels Antagonists
- Prostanoid Receptors Antagonists
- Nerve Growth Factor Inhibitors
- Rho- kinase Inhibitors
- K+ channels Openers
- Centrally acting drugs

Targets and Drugs: State-of-the-Art-Knowledge

- Purinergic receptors Antagonists
- **Cannabinoid system -** Agonists Antagonists Inhibitors
- **TRP channels Antagonists**

North and Jarvis, Mol Pharmacol., 2013 Apr;83(4):759-69

Bladder Function in P2X3-deficient Mice

Cockayne et al. Nature 407:1011, 2000

In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization

Anthony P. Ford

Purinergic Signalling (2012) 8 (Suppl 1):S3–S26

The Effect of a P2X3 Antagonist on Cystometric Reflexes in Anesthetized Rats

TV = Threshold volume; FREQ = Frequency; AMP = Amplitude

Ford and Cockayne, Handb Exp Pharmacol. 2011;(202):485-526.

Effects of AF-353 on Afferent Signaling from the Bladder

Purinergic Signalling (2012) 8 (Suppl 1):S3–S26

P2X3 receptor antagonists

Good preclinical rationale

New promising drug candidates

No clinical experiences published

Targets and Drugs

- Purinergic receptors Antagonists
- Cannabinoid system Agonists Antagonists Inhibitors
- TRP channels Antagonists

Cannabinoid receptors – CB1 and CB2

CB2 receptors in the urothelium/lamina propria

Gratzke et al. J Urol , 2009;181:1939-1948

Cannabinoid receptors - agonists

R. M. Freeman · O. Adekanmi · M. R. Waterfield · A. E. Waterfield · D. Wright · J. Zajicek

The effect of cannabis on urge incontinence in patients with multiple sclerosis: a multicentre, randomised placebo-controlled trial (CAMS-LUTS)

Conclusion: The findings are suggestive of a clinical effect of cannabis on incontinence episodes in patients with MS.

Cannabinoids

Distribution of fatty acid amide hydrolase (FAAH; cannabinoid degrading enzyme) immunoreactivity in the urothelium

Strittmatter et al., Eur Urol, 2012;61:98-106

Effects of FAAH inhibition (OEtA) on rat cystometry

Rimonabant: CB1 receptor antagonist SR144528: CB2 receptor antagonist

Strittmatter et al., Eur Urol, 2012;61:98-106

Inhibition of Peripheral FAAH Depresses Activities of Bladder Mechanosensitive Nerve Fibers of the Rat

Naoki Aizawa, Petter Hedlund,* Claudius Füllhase, Hiroki Ito, Yukio Homma⁺ and Yasuhiko Igawa^{*},[‡]

"inhibiting peripheral FAAH depresses the Ad and C-fiber activity of primary bladder afferents via CB1 and CB2 receptors"

Aizawa et al, J Urol.., 2014 Sep;192(3):956-63

The cannabinoid system

Exocannabinoids: promising preliminary human data

 Endocannabinoids (FAAH inhibitors): promising animal data

Potential for further development ?

Targets and Drugs

- Purinergic receptors Antagonists
- Cannabinoid system Agonists Antagonists Inhibitors
- **TRP channels Antagonists**

TRPV1 Receptors on Substance P (SP) and Calcitonin Gene-Related Peptide (CGRP) Containing Nerves in the Rat Bladder

Effects of a Selective TRPV1 Antagonist on Rat bladder

Kitagawa et al., J Urol. 2013 Mar;189(3):1137-46

BJCP British Journal of Clinical Pharmacology

An investigation of the safety and pharmacokinetics of the novel TRPV1 antagonist XEN-D0501 in healthy subjects

Patrick Round,¹ Anthony Priestley² & Jan Robinson¹

¹Xention Ltd, and ²LCG Bioscience, Cambridge, UK

...: The observed increase in body temperature was not considered to be of clinical concern."

Br J Clin Pharmacol. 2011 Dec;72(6):921-31

Principles – Agents of Potential Interest

TRPV1 channel antagonists

Promising animal data – but do they work in human OAB/DO? Problems with side effects (hyperthermia) Potential for further development

Centrally acting drugs

Agents of Potential Interest: Limitations and Opportunities

Drugs with an action on the CNS

Several principles seem to work Currently used drugs have low efficacy and/or unacceptable side effects

Great potential for further developments

How to Optimize Current OAB Treatment?

Individualized treatment

Combination therapy

Subcategorization of the OAB population (biomarkers?)

Progress and Opportunities for Pharmacological Treatments

Summary

Several unexplored targets

Promising animal data

Translation to clinic slow – no new drugs ready for clinical introduction

Combination therapy an alternative for improved effects