Progress and Opportunities for Pharmacological Treatments

Karl-Erik Andersson, MD, PhD

Wake Forest Institute for Regenerative Medicine,
Wake Forest University School of Medicine,
Winston Salem, North Carolina,
Disclosures

• **Current funding:** NIH

• **Other financial relationships:**
 Consultant/Advisory board:
 Allergan, Astellas, Bayer, Ferring

• **Conflicts of interest:** None
Progress and Opportunities for Pharmacological Treatments

Focus on:

Significance
State-of-the-Art-Knowledge
Knowledge Gaps
Research Opportunities
Progress and Opportunities for Pharmacological Treatments

Outline

What is available?

What do we want?

What is promising?

- advantages
- limitations
What is available?

- **Antimuscarinics** block muscarinic receptors, efficacious but adverse effects, still a first line pharmacological therapy

- β_3–AR agonists (*mirabegron*) relax the bladder, efficacious, fewer adverse effects than antimuscarinics, first line alternative pharmacological therapy

 Knowledge gap: long term data

- **Phosphodiesterase-5 inhibitors** (*tadalafil*) improve male LUTS, mechanism unclear. Do they work in women? Research opportunity

- **Onabotulinumtoxin A** inhibits transmitter release from nerves (afferent and motor) and urothelium, efficacious but second line pharmacological therapy
What Do We Want?

OAB is multifactorial
– is it possible to find a drug that improves everybody?
Knowledge gap: mechanistic studies

OAB is a filling disorder
– is there a common mechanism that can be targeted?
Knowledge gap: mechanistic studies

OAB is a “benign” disorder
– adverse effects must be few and mild
Both the overactive bladder (OAB) syndrome and detrusor overactivity (DO) are multifactorial disorders.

Are multiple, separate pathways involved, each contributing to the disorder?

Knowledge gap: mechanistic studies

Do all pathophysioses have a common pathway?

Knowledge gap: mechanistic studies
OAB – Suggested Underlying Mechanisms

Uroepithelial factor:
Sensor moleculars: ACh, ATP, NGF, TRPV1

Myogenic factor:
Detrusor spontaneous contraction
Hypersensitivity to incoming signals

Neurogenic factor:
Abnormal afferent excitability
Abnormal sensory process

Specific factor:
Bladder outflow obstruction
Metabolic syndrome and diabetes mellitus
Inflammation

Meng et al., LUTS ; 2012: 4:38-55
Pathophysiology of LUTS/DO/OAB

- Increased afferent activity
- Decreased capacity to handle afferent information
- Decreased suprapontine inhibition
- Myogenic activity and influence of local factors
- Urothelial signaling
Pathophysiology of LUTS/DO/OAB

- Decreased capacity to handle afferent information
- Decreased suprapontine inhibition
- Increased afferent activity
- Myogenic activity and influence of local factors
 Urothelial signaling
Pathophysiology of LUTS/DO/OAB

- Decreased capacity to handle afferent information
- Decreased suprapontine inhibition
- Increased afferent activity
- Myogenic activity and influence of local factors
- Urothelial signaling
OAB – Targets for Drug Treatment

Levels of intervention

Bladder: factors and structures in the bladder wall

Afferent nerves: Afferent signaling from the bladder

CNS: Central handling of afferent information

Bladder: Efferent neurotransmission
What is Promising?

Targets and Drugs: Research Opportunities

- **Purinergic receptors** - Antagonists
- **Cannabinoid system** - Agonists – Antagonists - Inhibitors
- **TRP channels** - Antagonists
- **Prostanoid Receptors** – Antagonists
- **Nerve Growth Factor** - Inhibitors
- **Rho- kinase** - Inhibitors
- **K+ channels** - Openers
- **Centrally acting drugs**
What is Promising?

Targets and Drugs: State-of-the-Art-Knowledge

- **Purinergic receptors** - Antagonists
- **Cannabinoid system** - Agonists – Antagonists - Inhibitors
- **TRP channels** - Antagonists
Bladder Function in P2X3-deficient Mice

In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization

Anthony P. Ford
The Effect of a P2X3 Antagonist on Cystometric Reflexes in Anesthetized Rats

TV = Threshold volume; FREQ = Frequency; AMP = Amplitude

AF353 (1 mg/kg, i.v.)

Effects of AF-353 on Afferent Signaling from the Bladder

What is Promising?

P2X3 receptor antagonists

Good preclinical rationale

New promising drug candidates

No clinical experiences published
What is Promising?

Targets and Drugs

- **Purinergic receptors - Antagonists**
- **Cannabinoid system - Agonists – Antagonists - Inhibitors**
- **TRP channels - Antagonists**
What is Promising?

Cannabinoid receptors – CB1 and CB2

CB2 receptors in the urothelium/lamina propria

What is Promising?

Cannabinoid receptors - agonists

R. M. Freeman · O. Adelkanmi · M. R. Waterfield · A. E. Waterfield · D. Wright · J. Zajicek

The effect of cannabis on urge incontinence in patients with multiple sclerosis: a multicentre, randomised placebo-controlled trial (CAMS-LUTS)

Conclusion: The findings are suggestive of a clinical effect of cannabis on incontinence episodes in patients with MS.
What is Promising?

Cannabinoids

Distribution of fatty acid amide hydrolase (FAAH; cannabinoid degrading enzyme) immunoreactivity in the urothelium

Strittmatter et al., Eur Urol, 2012;61:98-106
What is Promising?

Effects of FAAH inhibition (OEtA) on rat cystometry

Rimonabant: CB1 receptor antagonist
SR144528: CB2 receptor antagonist

Strittmatter et al., Eur Urol, 2012;61:98-106
Inhibition of Peripheral FAAH Depresses Activities of Bladder Mechnosensitive Nerve Fibers of the Rat

Naoki Aizawa, Petter Hedlund,* Claudius Fülhase, Hiroki Ito, Yukio Homma† and Yasuhiko Igawa*,†

"inhibiting peripheral FAAH depresses the Ad and C-fiber activity of primary bladder afferents via CB1 and CB2 receptors"

Aizawa et al, J Urol., 2014 Sep;192(3):956-63
What is Promising?

The cannabinoid system

- Exocannabinoids: promising preliminary human data
- Endocannabinoids (FAAH inhibitors): promising animal data

Potential for further development?
What is Promising?

Targets and Drugs

- Purinergic receptors - Antagonists
- Cannabinoid system - Agonists – Antagonists - Inhibitors
- TRP channels - Antagonists
TRP- Channels in the Bladder

Skryma et al
TRPV1 Receptors on Substance P (SP) and Calcitonin Gene-Related Peptide (CGRP) Containing Nerves in the Rat Bladder

Effects of a Selective TRPV1 Antagonist on Rat bladder

Kitagawa et al., J Urol. 2013 Mar;189(3):1137-46
...: The observed increase in body temperature was not considered to be of clinical concern.”
Principles – Agents of Potential Interest

TRPV1 channel antagonists

Promising animal data – but do they work in human OAB/DO?

Problems with side effects (hyperthermia)

Potential for further development
What is Promising?

Centrally acting drugs

5-HT/NA reuptake inhibitors?

Opioids?

GnRh antagonists?

Gabapentin analogues?

NK-1 receptor antagonists?
Agents of Potential Interest: Limitations and Opportunities

Drugs with an action on the CNS

Several principles seem to work

Currently used drugs have low efficacy and/or unacceptable side effects

Great potential for further developments
How to Optimize Current OAB Treatment?

- Individualized treatment
- Combination therapy
- Subcategorization of the OAB population (biomarkers?)
Progress and Opportunities for Pharmacological Treatments

Summary

Several unexplored targets

Promising animal data

Translation to clinic slow – no new drugs ready for clinical introduction

Combination therapy an alternative for improved effects