Therapy: targets and approaches to improve cognitive and sensory outcomes

Kirk I. Erickson, PhD
Department of Psychology
University of Pittsburgh
Disclosures

• Current funding:
 • UPMC Enterprises
 • NIH: R01 AG053952, R01 CA196762, R01 DK095172, UF1AG051197, P30 AG024827, R56 HL128317
 • European Union: PSI2016-77475-R
 • CIHR: CIHR 366276
 • Australian Research Council: DP160104162
 • Alzheimer’s Association: NPSASA-14-321093

• Other financial relationships: None

• Conflicts of interest: None
Interventions to influence cognitive function

• Exercise interventions (e.g., brisk walking)

• Cognitive training interventions (e.g., multi-task training)

• Dietary interventions (e.g., Mediterranean diet)

• Multi-modal interventions (e.g., combining cognitive training + exercise)
Intervention types – effects on cognitive function

• Exercise interventions (e.g., brisk walking) – Moderate evidence
 • Ongoing clinical trials should be illuminating

• Cognitive training interventions (e.g., multi-task training) – Mixed evidence

• Dietary interventions (e.g., Mediterranean diet) – Modest evidence right now
 • Ongoing clinical trials should help clarify associations

• Multi-modal interventions (e.g., combining cognitive training + exercise)
 • Modest evidence that the multi-modal component adds above and beyond the individual component
Meta-analyses: epidemiological studies

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Weight</th>
<th>Risk ratio IV, Random, 95% CI</th>
<th>Risk ratio IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ho et al., (M)</td>
<td>2.7%</td>
<td>0.53 [0.25, 1.12]</td>
<td></td>
</tr>
<tr>
<td>Ho et al., (F)</td>
<td>5.8%</td>
<td>0.53 [0.32, 0.87]</td>
<td></td>
</tr>
<tr>
<td>Laurin et al., (M)</td>
<td>4.6%</td>
<td>0.68 [0.39, 1.19]</td>
<td></td>
</tr>
<tr>
<td>Laurin et al., (F)</td>
<td>3.6%</td>
<td>0.47 [0.25, 0.89]</td>
<td></td>
</tr>
<tr>
<td>Schuit et al.,</td>
<td>1.4%</td>
<td>0.50 [0.18, 1.41]</td>
<td></td>
</tr>
<tr>
<td>Yaffe et al.,</td>
<td>20.5%</td>
<td>0.74 [0.60, 0.91]</td>
<td></td>
</tr>
<tr>
<td>Pignatti et al.,</td>
<td>1.3%</td>
<td>0.27 [0.09, 0.82]</td>
<td></td>
</tr>
<tr>
<td>Lytle et al.,</td>
<td>2.8%</td>
<td>0.45 [0.22, 0.94]</td>
<td></td>
</tr>
<tr>
<td>Flicker et al.,</td>
<td>3.2%</td>
<td>0.50 [0.25, 1.00]</td>
<td></td>
</tr>
<tr>
<td>Singh–Manoux et al.,</td>
<td>16.7%</td>
<td>0.61 [0.48, 0.78]</td>
<td></td>
</tr>
<tr>
<td>Sumic et al., (M)</td>
<td>0.9%</td>
<td>0.91 [0.25, 3.36]</td>
<td></td>
</tr>
<tr>
<td>Sumic et al., (F)</td>
<td>0.9%</td>
<td>0.12 [0.03, 0.44]</td>
<td></td>
</tr>
<tr>
<td>Middleton et al.,</td>
<td>19.1%</td>
<td>0.73 [0.59, 0.91]</td>
<td></td>
</tr>
<tr>
<td>Niti et al.,</td>
<td>12.6%</td>
<td>0.62 [0.46, 0.84]</td>
<td></td>
</tr>
<tr>
<td>Etgen et al.,</td>
<td>3.9%</td>
<td>0.46 [0.25, 0.85]</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI) 100.0% 0.62 [0.54, 0.70]

Heterogeneity: Tau² = 0.01; χ² = 16.94, df = 14 (P = 0.26); I² = 17%
Test for overall effect: Z = 7.49 (P < 0.00001)

Sofi et al., 2011
Exercise training improves cognitive function in older adults

Colcombe & Kramer, 2003
Erickson, Voss, Prakash, et al. (2011)
Physical Activity increases fronto-temporo-parietal connectivity

Walking increases functional connectivity between prefrontal and hippocampal regions.

Exercise increased network community structure in the hippocampus and anterior cingulate cortex.

Voss et al., 2010
Burdette et al., 2010
Mechanisms?

Physical activity → cellular and molecular changes → structural and functional brain changes → psychosocial changes → Cognitive functioning

Stillman et al., 2016
Interventions: What?

• What kind of intervention is best?
• What kind of exercise? Mode of activity?
• What is the most effective dose, frequency?
• How long do the effects persist?
Interventions: When?

• Do critical periods, sensitive periods, or windows-of-opportunity matter?

• Is it ever “too late”? A “point of no return”?
Interventions: moderators and mediators

• Understanding mechanisms and individual differences has a direct impact on therapeutic strategies and impact:
 • Without this we could be targeting the wrong population with the least effective approaches for the weakest effects at the most inopportune times.

• A more targeted approach in terms of risk, brain phenotypes of interest, projected outcomes, etc. is necessary to move this field forward
What can we be certain about?

1. Greater amounts of physical activity are associated with reduced cognitive decline in late adulthood.

2. The brain changes with prolonged exposure to physical activity – with regional specificity

3. Only modest amounts of exercise are sufficient for detecting effects.
10 remaining questions

1. Dose of activity – frequency, duration, intensity?
2. Type of activity – walking, tennis, strength?
3. Prevention, delaying, treating cognitive decline?
4. Specificity to certain populations?
5. Cognitive domains most affected?
6. Importance of neuroimaging outcomes?
7. Mechanisms?
8. Individual differences – moderators of the effects?
9. Maintenance of the effects – how long do they last?
10. Comparing effectiveness to other interventions