Nutrition and Age-Associated Inflammation :Role of Nutritional Intervention

Simin Nikbin Meydani, DVM, PhD

simin.meydani@tufts.edu

- Role of immune and inflammatory responses in age-related diseases
- 2) Brief description of mechanism of age-related increase in macrophage inflammatory products and its contribution to age-associated decline in T cell function and increase susceptibility to infectious diseases.
- Age-associated adipose tissue inflammation and its implication for type 2 diabetes
- 4) Use of nutritional strategies to reverse macrophage inflammation and its impact for reducing the risk of infectious diseases.

Cytokine and PGE2 Production by LPS-stimulated Mφ of Young and Old Mice (pg/μg protein)

	Young	Old
IL-1 β	4 ± 1	20 ± 4
IL-6	60 ± 24	82 ± 22 [*]
TNF-α	5 ± 1	5 ± 1
IL-10	1.8 ± 0.4	20 ± 7 [*]
PGE ₂	85 ± 17	242 ± 50 [*]

Mean ± SE, n=11-13/group *Significant age effect

Ren et al., Unpublished data

PGE₂ and **Immune Function** in the Aged

T cell function declines with aging in both animals and humans

Increased PGE₂ production contributes to the age- associated suppression in T cell function (Beharka et al., Mech. Aging Devel. 93:59-77, 1997)

PGE₂ is also implicated in pathogenesis of inflammatory, cardiovascular, and neoplastic diseases, incidence of which increases with age

Age-associated Increase in COX-2 mRNA Expression

What Is the Mechanism of Ageassociated Increase in COX-2 Expression?

Regulators of COX-2 Gene Expression

COX-2 expression

Mediators of Age-associated COX-2 Expression

Age-associated Increase in COX-2 Expression is Due to Ceramide-induced Upregulating of NFκB Activation

- Old Mφ have higher ceramide levels and NFκB activity than young Mφ.
- Addition of Ceramide increases NFκB and COX-2 expression in young Mφ.
- NFκB inhibitors decrease COX-2 expression in old Mφ.

Claycombe et al., JBC 277:30784, 2002 Wu et al., JBC; 278: 10983, 2003

Mechanism for age-associated increase in COX-2 transcription

Aging, Insulin Resistance, T2D incidence

 It has been known for a long time that glucose intolerance, insulin resistance, and T2D incidence are increased with advancing age.

Obesity Results in Insulin Resistance Through Inducing Macrophage Infiltration and Their Production of Inflammatory Cytokines

Wellen and Hotamisligil, JCI, 112:1785, 2003

Sharp increase with age in diabetes incidence can't be entirely explained by the change in body weight and body composition

CDC data (http://www.cdc.gov)

Age-related Increase in Adipose Tissue Inflammation and its Underlying Mechanisms

Methods

- Animals: C57BL mice Young (5-6 mo) Old (23-24 mo)
- Adipocyte and SVC isolation: collagenase digestion
- **mRNA analysis**: Real time RT-PCR
- <u>Mø in AT</u>: FACS and immunohistochemistry
- <u>IL-6 and TNF-α assay</u>: ELISA
- PGE₂ assay: RIA
- <u>Cell viability</u>: MTS and LDH assays

Epididymal Adipose Tissue From Old Mice Have Higher Expression of Inflammatory Genes

Significantly different from Young mice

M\u00f3 (F4/80+ cells) in epididymal adipose tissues of young and old mice

Wu et al., JI, 179:4829, 2007

IL-6 and PGE₂ Production Is Not Significantly Different Between Stromal Vascular Cells of Young and Old Mice

Mean+ SE, n=6

Adipocytes From Old Mice Have Higher IL-6 and PGE₂ Production Than Those of Young Mice

*Significantly different from young mice. Mean+SE, n=7-10

Old Adipocytes Have Higher Levels of Ceramide and Sphingomyelin Compared to Those From Young

SM: sphingomyelin; Cer: ceramide; ClcCer: glucosylated ceramide; SO: sphingosine; S1P: sphingosin-1-phosphate; C1P: ceramide-1-phosphate.

Ceramide Increases IL-6 Production by Adipocytes of Young and Old Mice

*Significan age difference within each treatment. Mean<u>+</u>SE, n=6

Effect of inhibiting de novo ceramide synthesis and nSMase on LPS-stimulated IL-6 and TNF-α production by adipocytes

IL-6

TNF-α

Mean ± SE, n=10

Different letters within each age denote significant difference at p<0.05. There is a significant difference between age group in every treatment.

Inhibiting NF-κB Activation Reduces IL-6 Production by Adipocytes of Young and Old Mice

Inhibiting NF-κB Activation Reduces Sphingomyelinase-induced IL-6 Production by Mouse Adipocytes

Wu et al., JI, 179:4829, 2007

Summary

- **1.** Adipose tissue expression of pro-inflammatory mediators is upregulated while anti-inflammatory and insulin-sensitizing factor PPAR-γ is downregulated with aging.
- 2. Unlike the changes observed in obesity, there is no apparent age-related difference in either Mφ infiltration into adipose tissue or MCP-1 production by adipocytes.
- **3.** Adipocytes and not non-adipocytes (stromal vascular cells) in adipose tissue may be the major player responsible for age-related upregulation of inflammatory products, suggesting a different mechanism from that in obesity.

Age-related Increase in Adipose Tissue Inflammation and its Underlying Mechanisms

Nutritional Intervention and Age- associated Inflammation

Vitamin E
n-3 PUFA
Calorie restriction

Vitamin E and PGE₂ Production

Vitamin E and Immune Response in the Older Adults

Vitamin E supplementation of healthy elderly significantly improves in vivo and in vitro indices of T cellmediated function.

> Meydani et al. AJCN 1990; 52:557-563 Meydani et al. JAMA 1997; 277:1380-1386. Pallast et al. AJCN 69: 1273-1281,1999.

Effect of Vitamin E Supplementation on Respiratory Infections

	Placebo	Vitamin E	OR (CI)
All respiratory Infections	74%	65%	0.65 * (0.43-0.97)
Upper respiratory infections	62%	50%	0.62 * (0.43-0.91)
Lower respiratory infections	32%	33%	1.03 (0.69-1.53)

*Significantly difeent from Placebo at p<0.05

Meydani et al. JAMA, 292:828-836, 2004.

Vitamin E treatment did not have an overall effect on TNFα production

Genetics influence cytokine production

- There is a high degree of variability in cytokine production between healthy individuals
 - Genetic factors may explain variability in cytokine production

SNPs may account for individual variability

- Single nucleotide polymorphisms (SNPs) are single base pair changes in the DNA.
- Identified at genes that encode cytokine proteins.

SNP \rightarrow influence cytokine response \rightarrow impact infection

The Effect E on TNF- α Production Depends on TNF- α -308G>A

Interaction: vitamin E and TNF-a -308G>A p=0.039*

*Adjusted for baseline TNF- α production

Placebo n=56 (G/G =46; A/G and A/A =10); Vitamin E group n=39 (G/G=22; A/G and A/A =17)

Belisle et al., JN, 2009

Concolusions

These observations suggest that individual immune responses to vitamin E supplementation are in part mediated by genetic factors.

Because A allele at TNFα is associated with higher TNFα levels, our observation suggest that the antiinflammatory effect of vitamin E is specific to those genetically predispose to higher inflammation.

Fish Oil Was Shown to Improve Clinical Symptoms In:

- Cardiovascular diseases
- Rheumatoid arthritis
- Psoriasis
- Multiple sclerosis
- Systemic lupus erythematosus
- Atopic dermatitis
- Ulcerative colitis

Modulatory Effect of EPA on Eicosanoid Synthesis

Effect of Low-fat Diets High and Low in Fish on Ex-vivo Cytokine and PGE₂ Production

	Low fat,	low fat,
	high fish	low fish
	% change #	
IL-1 β	-40*	62 *
TNF	-35*	17
IL-6	-34*	0
PGE2	-63*	30
# Compared to their own baseline Meyda		Meydani et al., JCI; 92:105-1, 1993

Comprehensive Assessment of Longterm Effects of Reducing Intake of Energy

CALERIE

Jean Mayer USDA HNRCA at TUFTS UNIVERSITY BOSTON, MA

Experimental Design

- Design: Randomized, controlled, single-blind
- Subjects: Men and women, 25-45 years old, with BMI of 25-29 Kg/m²
- Intervention: 10 or 30% calorie restriction.
- DTH: Baseline and after 6 mo.
- In vitro immune measures: Baseline and after 6 mo.

Effect of Calorie Restriction on LPS-Stimulated PGE₂ Production

* Significantly different from baseline Ahmed et al. J. Gerontology, 2009

Effect of Calorie Restriction on Delayed Type Hypersensitivity Skin Response

Ahmed et al. J. Gerontology, 2009

Effects of Calorie Restriction on Lymphocyte Proliferation

