# AGING, BLOOD PRESSURE & CARDIOVASCULAR DISEASE EVENT RISK

Michael Smolensky, Ph.D. The University of Texas Austin & Houston

# Disclosures

- Partner: Circadian Ambulatory Diagnostics
- Consultant: Spot On Sciences (Austin, Texas)
- Consultant: National Toxicology Program, US Dept. Health & Human Services

# Outline

- Accuracy of daytime office blood pressure (BP) measurement (OBPM) vs. 24-hour ambulatory BP monitoring (ABPM) to diagnose hypertension
- Accuracy of cardiovascular disease (CVD) event prediction by daytime OBPM vs. ABPM-derived awake or asleep BP means
- Trend in awake & asleep SBP & DBP with aging
- Male/female difference in BP diagnostic thresholds & relevance to CVD risk reduction of women
- Differential reduction of CVD events by treatment that targets normalization of daytime OBPM *vs.* asleep BP *vs.* awake BP

## Part I: Merit of 24-hour ABPM vs. Daytime OBPM to Diagnose Hypertension & Assess CVD Risk

Significance:

- Accurate diagnosis of normal vs. elevated BP
- Accurate prognostication of future CVD events
  State of art knowledge:
- ABPM more consistent and accurate than OBPM & better predictor of future CVD events

### Each 20/10 mm Hg Increase in BP Doubles CV Mortality Risk

- Meta-analysis of 61 prospective, observational studies
- 1 million adults
- 12.7 million person-years



"Individuals aged 40-69 years (N = 1 million). Lewington S, et al. *Lancet.* 2002;360:1903-1913.

### Continued

**US Prevention Services Task Forces 2015 report:** 

- Confirmation of daytime OBPM-diagnosed hypertension by out-of-office measurement poor - as low as 35% & generally no better than 75%<sup>1</sup>
- ABPM predicts long-term CVD events *independently* of OBPM: Hazard ratio = 1.28 to 1.40<sup>1</sup>

**ABC-H Investigators 2015 report:** 

 ABPM, especially nighttime SBP, significantly better predictor of future CVD events than daytime OBPM<sup>2</sup>

> <sup>1</sup>Piper et al., *Ann Intern Med*. 2015;162:192-204 <sup>2</sup>ABC-Investigators et al., J. *Hypertens*. 2015;32:2332-40

# Merit of OBPM vs. ABPM-Derived Awake vs. Asleep BP to Predict Future CVD Events

- 2005 Dublin 8.4 yr median duration trial (5292 pts): ABPM superior to daytime OBPM as predictor of CVD & all-cause mortality, nighttime SBP strongest predictor<sup>1</sup>
- 2008 European CVD events trial (3468 pts): ABPM-derived daytime & nighttime SBP means predicted CVD & all-cause, coronary heart disease & stroke mortality *independently* from daytime OBPM. When the SBPs simultaneously entered into statistical model, nighttime SBP predicted all outcomes, whereas daytime SBP did not add prognostic precision<sup>2</sup>

<sup>1</sup>Dolan et al., *Hypertension*. 2005;46:156-61 <sup>2</sup>Fagard et al., Hypertension 2008;51:55-61

#### Part II: ABPM-Derived Asleep BP Parameters

Significance:

- Asleep systolic BP (SBP) mean more strongly correlated with CVD events than awake or 24-hour SBP means
- Incidence of elevated asleep SBP increases steadily after 45 yrs of age
- Studies suggest diagnostic hypertension thresholds for women should be lower than current ones

State of art knowledge:

 ABPM plus pt diary/wrist actigraphy to denote actual sleep & awake spans is the only way to assess sleep SBP & DBP means

#### **SBP IN NORMOTENSIVE SUBJECTS**



© Hermida et al. Chronobiol Int. 2002;19:461-481.

#### PATTERNS OF BLOOD PRESSURE VARIABILITY



# Change in awake and asleep SBP means with age in hypertensive individuals.



#### Hermida et al., Chronobiol Int. 2013;30:176-91

# Change in sleep-time relative SBP decline with age in hypertensive individuals.



Hermida et al. Chronobiol Int. 2013;30:176-91

# Elevated Asleep BP & Non-Dipping & BP Patterning Is Common

- Aging (≥60% in elderly >age 65 yrs)
- Resistant hypertension (~80%)
- Type 2 diabetes (>75%)
- Chronic renal disease (~70%)
- Sleep disorders: insomnia, obstructive sleep apnea, etc. (??)
- Chronic pain syndromes that disturb sleep (??)
- Chronic nocturnal COPD that disturbs sleep (??)
- Chronic nocturia that disturbs sleep (??)
- Neurological conditions that disturb sleep (??)
- Metabolic syndrome (??)
- Previous CVD events (??)

## MAPEC Outcomes Trial (1626 Female/1728 Male Day-Active Pts)\*

Prospective clinical trial to compare differential merit of:

- Daytime OBPM vs. ABPM-derived awake & asleep BP parameters to predict future CVD events
- Targeting control of awake vs. asleep BP by bedtime therapy (full dose of ≥1 conventional hypertension medications) vs. typical morning therapy for BP control & CVD event reduction

\*Hermida et al., *Chronobiol Int.* 2010;27:1629-51

# **MAPEC Trial Methods**

- At inclusion & annually, pts assessed for 48 consecutive hours by ABPM: Δt=20 min 07:00 to 23:00 & Δt=30 min overnight
- Physical activity monitored by wrist actigraphy (Δt=1 min) to accurately derive per pt awake & asleep SBP & DBP means
- ABPM integrated into primary pt care medicine & done at least annually to enable detection of relationship between BP parameters & 24-hour patterning that immediately preceded a CVD event.

# **MAPEC Trial Outcomes**

(Blue=Major; Blue + Black=Total CVD events)

- CVD event outcomes:
  - Myocardial infarction
  - Hemorrhagic stroke
  - Ischemic stroke
  - CVD death
  - Coronary revascularization
  - Heart failure
- Additional registered events:
  - Angina pectoris
  - Transient ischemic attacks
  - Acute arterial occlusion of lower extremities
  - Thrombotic occlusion of retinal artery
  - Non-CVD death

### What Is the Best Predictor of CVD Events: ABPM-Derived Asleep vs. Awake BP?

Patients of MAPEC Trial divided into 4 groups according to ABPM-derived awake & asleep SBP & DBP means at final evaluation before CVD event:

- Normal awake SBP/DBP means: <135/85 mmHg
- Normal asleep SBP/DBP means: <120/70 mmHg

\*Hermida et al., *J Am Coll Cardiol.* 2011;58:1165-73

#### Adjusted hazard ratio of **total CVD events** Classification by awake and asleep BP means



Hermida et al. J Am Coll Cardiol. 2011;58:1165-73.

#### Adjusted hazard ratio of **major CVD events** Classification by awake and asleep BP means



Normal asleep BP

Adjusted HR

#### High asleep BP

Hermida et al., *J Am Coll Cardiol*. 2011;58:1165-73 Hermida et al., *Chronobiol Int*. 2013;30(3):355-410 Simultaneous Evaluation of OBPM & Awake & Asleep BP for Best Predictor of Future CVD Events

MAPEC Trial Pts of the same 4 groups categorized according to awake & asleep BP now additionally classified by normal *vs.* elevated daytime OBPM

- Normal daytime OBPM: <140/90 mmHg
- *Elevated daytime OBPM*: ≥140/90 mmHg

#### Adjusted HR of total CVD events in the MAPEC Study. Classification by clinic, awake, and asleep BP means.



Hermida et al., J Am Coll Cardiol. 2011;58:1165-73

#### Figure 3



# **Diagnostic ABPM Thresholds (mmHg)**

| <b>ABPM-Derived</b> | Men ≥18 yrs | Women ≥18 yrs |  |
|---------------------|-------------|---------------|--|
| Awake mean          |             |               |  |
| SBP                 | 135         | 125           |  |
| DBP                 | 85          | 80            |  |
| Asleep mean         |             |               |  |
| SBP                 | 120         | 110           |  |
| DBP                 | 70          | 65            |  |

# Part III: Bedtime Hypertension Therapy to Optimize BP Control & Reduce CVD Risk

Significance:

- Asleep SBP mean more strongly correlated with CVD event risk than awake SBP or daytime OBPM values
- State of art knowledge:
- Conventional long-acting BP-lowering medications when ingested at bedtime *vs.* morning are more effective in normalizing entire BP 24-hour pattern
- Conventional hypertension therapy ingested at bedtime substantially reduces CVD event risk

#### Ingestion-Time Differences in Effect of 6 Classes of Hypertension Therapies on Asleep BP

| Class<br>Medication    | Dose<br>mg | No.<br>Pts | Reduction: asleep<br>SBP/DBP mean |                        | Sleep-time relative<br>SBP/DBP decline |                        |
|------------------------|------------|------------|-----------------------------------|------------------------|----------------------------------------|------------------------|
|                        |            |            | Awakening R <sub>x</sub>          | Bedtime R <sub>x</sub> | Awakening R <sub>x</sub>               | Bedtime R <sub>*</sub> |
| ACEIs                  |            |            |                                   |                        |                                        |                        |
| Ramipril               | 5          | 115        | -4.5/-4.1                         | -13.5/-11.5*           | -3.3/-1.8                              | 3.4/4.9*               |
| Spirapril              | 6          | 165        | -5.7/-4.6                         | -12.8/-8.6*            | -2.5/-2.7                              | 4.1/4.5*               |
| ARBs<br>Valsartan      | 160        | 200        | -12.9/-8.1                        | -21.1/-13.9*           | 0.4/0.9                                | 7.2/7.1*               |
| Telmisartan            | 80         | 215        | -8.3/-6.4                         | -13.8/-9.7*            | -1.6/-1.0                              | 3.1/3.9*               |
| CCB<br>Nifedipine GITS | 30         | 238        | -7.5/-5.1                         | -12.8/-7.8*            | -0.7/-0.2                              | 1.0/1.5‡               |
| α-Blocker              |            |            |                                   |                        |                                        |                        |
| Doxazosin GITS         | 4          | 39         | 0.7/-1.3                          | -8.2/-6.5†             | -2.3/-2.4                              | 1.9/1.9‡               |
| β-Blocker              |            |            |                                   |                        |                                        |                        |
| Nebivolol              | 5          | 173        | -7.9/-7.4                         | -10.2/-8.1             | -3.6/-3.0                              | -1.2/-1.4‡             |
| Diuretic<br>Torasemide | 5          | 113        | -4.3/-2.5                         | -12.5/-8.0*            | -1.6/-0.7                              | -1.3/-0.2              |

Age, diabetes and sex-adjusted hazard ratio as a function of treatment-time (□1 medication at bedtime compared to all medication upon awakening) in hypertensive subjects (MAPEC study)



Hermida et al. Chronobiol Int. 2010;27:1629-51.

# Conclusions

- Hypertension in adults should be established by 24hour ABPM
- ABPM-derived asleep SBP mean -- not awake SBP mean or daytime OBPM -- most significant & independent predictor of future CVD events
- Elevated asleep BP & nocturnal non-dipping BP patterning increase steadily after age >45 yrs
- Diagnostic thresholds that differentiate elevated from normal BP appear to be lower for women than men
- Targeting asleep SBP by bedtime vs. upon wakening ingestion of conventional BP medications reduces CVD events substantially

### Gaps in Knowledge

- It is unknown if chronic co-morbidities that disrupt sleep elevate asleep (& awake) BP & future CVD event risk
- It is unknown how sleep length affects asleep BP and future CVD event risk
- It is unknown to what extent increase of CVD events with age in women is due to misdiagnosis throughout life of elevated BP because of reliance on population & male-based SBP & DBP thresholds
- It is unknown if a bedtime treatment strategy entailing conventional medications is appropriate for all forms of hypertension

## **Research Questions**

- Does asleep SBP best predict future CVD events across all races & women & men?
- Is incidence of elevated asleep BP & CVD risk greater in short vs. long sleepers & does it vary by race, age, & sex?
- Do chronic medical conditions that disrupt sleep result in elevated asleep SBP & higher CVD event risk?
- Do all obstructive sleep apnea & other sleepdisordered pts have elevated asleep BP & CVD risk?
- Do awake & asleep hypertension states entail different mechanisms, CVD event risk & is bedtime (*chrono*)therapy with conventional BP-lowering medications best for all types of hypertension?

# Acknowledgements

Most materials of this presentation were derived from the MAPEC outcomes trial (Ambulatory Blood Pressure Monitoring to **Predict Cardiovascular Events**); appreciation is extended to the primary investigators, particularly Drs. Ramon Hermida & Diana Ayala, & the many dedicated participating doctors, nursing & patients.