Clonal hematopoiesis of indeterminate potential: A joint risk factor for cancer and atherosclerosis

Pradeep Natarajan, MD MMSc
Director of Preventive Cardiology, MGH
Paul & Phyllis Fireman Endowed Chair in Vascular Medicine, MGH
Associate Professor of Medicine, HMS
Associate Member, Broad Institute
@pnatarajanmd

October 18-19, 2021
AGS/NIA/ACC U13
Washington, DC
Disclosures

• Current funding:
 – NHLBI, NIDDK, Fondation Leducq, AstraZeneca, Mass General Hospital, Novartis

• Other financial interests:
 – Prior grants: Amgen, Apple, Boston Scientific
 – Consultant: Apple, AstraZeneca, Blackstone Life Sciences, Foresite Labs, Novartis, Genentech / Roche
 – Spousal employment: Vertex

• Conflicts of interest:
 – None
‘Clonal Hematopoiesis of Indeterminate Potential’

Welch JS et al. *Cell.* 2012

1 in 10 individuals >70 years have CHIP

Clinical risk factors of CHIP mirror CVD risk factors

<table>
<thead>
<tr>
<th></th>
<th>Beta coefficient</th>
<th>OR(95 CI)</th>
<th>p-value</th>
<th>Variance explained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.07</td>
<td>1.08(1.07-1.09)</td>
<td><0.001</td>
<td>0.06</td>
</tr>
<tr>
<td>European (referent)</td>
<td></td>
<td></td>
<td></td>
<td>0.003</td>
</tr>
<tr>
<td>African-American</td>
<td>0.15</td>
<td>1.16(0.93-1.44)</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>East-Asian</td>
<td>-0.08</td>
<td>0.92(0.71-1.2)</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>-0.37</td>
<td>0.69(0.56-0.85)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>South Asian</td>
<td>-0.25</td>
<td>0.78(0.61-1)</td>
<td>0.057</td>
<td></td>
</tr>
<tr>
<td>No T2D (referent)</td>
<td></td>
<td></td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>Has T2D</td>
<td>0.28</td>
<td>1.32(1.14-1.54)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Male (referent)</td>
<td></td>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>Female</td>
<td>1.01</td>
<td></td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>-0.02</td>
<td>0.98(0.96-0.99)</td>
<td>0.005</td>
<td>0.001</td>
</tr>
<tr>
<td>Age:Female</td>
<td>-0.02</td>
<td></td>
<td>0.009</td>
<td>0.001</td>
</tr>
</tbody>
</table>

1.4-fold risk for all-cause mortality

CHIP is associated with increased CAD and early-onset MI risk

A CHIP and Coronary Heart Disease

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. of Participants with Coronary Heart Disease/No. at Risk</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biolmage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No mutation (reference)</td>
<td>94/326</td>
<td>1.8 (1.1–2.9)</td>
<td>0.03</td>
</tr>
<tr>
<td>Mutation</td>
<td>19/44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No mutation (reference)</td>
<td>299/607</td>
<td>2.0 (1.2–3.1)</td>
<td>0.003</td>
</tr>
<tr>
<td>Mutation</td>
<td>21/33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-effects meta-analysis</td>
<td></td>
<td>1.9 (1.4–2.7)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

B CHIP and Early-Onset Myocardial Infarction

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. of Participants with Myocardial Infarction/No. at Risk</th>
<th>Odds Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATV8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No mutation (reference)</td>
<td>1716/3293</td>
<td>5.4 (2.3–13.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mutation</td>
<td>37/43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROMIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No mutation (reference)</td>
<td>2488/3844</td>
<td>3.4 (1.8–6.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mutation</td>
<td>52/65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-effects meta-analysis</td>
<td></td>
<td>4.0 (2.4–6.7)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
CHIP, particularly ‘large CHIP,’ is associated with incident CVD risk

Bick A*, Pirruccello J*, …Natarajan P.
Circulation. 2020
Another form of clonal hematopoiesis is not linked to CAD

Humans and mice with CHIP have a greater burden of subclinical atherosclerosis

A Aortic-Root Sections, According to Tet2 Status

5 Wk

WT

KO

9 Wk

B CHIP and CAC Score of ≥615 Agatston Units, According to Variant Allele Fraction

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>No. of Participants with High CAC/No. at Risk</th>
<th>Odds Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No mutation (reference)</td>
<td>30/207</td>
<td>3.0 (1.0–8.7)</td>
<td>0.05</td>
</tr>
<tr>
<td>Mutation</td>
<td>7/19</td>
<td>0.9 (0.2–4.5)</td>
<td>0.87</td>
</tr>
<tr>
<td>VAF <0.10</td>
<td>2/11</td>
<td>12.0 (2.4–64.0)</td>
<td>0.002</td>
</tr>
<tr>
<td>VAF ≥0.10</td>
<td>5/8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inhibition of NLRP3 inflammasome mitigates atherogenesis in murine model

Fuster JJ et al. Science. 2017
CANTOS Trial

B Primary End Point with Canakinumab, 150 mg, vs. Placebo

Hazard ratio, 0.85 (95% CI, 0.74–0.98)
P=0.021

Cumulative Incidence of Primary End Point (%)

Years

No. at Risk
Placebo 3344 3141 2973 2632 1266 210
Canakinumab 2284 2151 2057 1849 907 207

Ridker PM et al. N Eng J Med. 2017
CANTOS: TET2 CHIP may predict greater CVD relative risk reduction from IL1B inhibition

• Overall trial: HR 0.85 (Ridker P et al. *NEJM* 2017)

• TET2 CHIP carriers (104 / 3925): HR 0.36 (Svensson EC et al. AHA Abstract 15111. 2018)
CHIP-associated CHD risk is specifically abrogated when IL6R p.Asp358Ala is present.

Bick A*, Pirruccello J*, ...Natarajan P. Circulation. 2020
Accelerated ovarian aging is correlated with clonal hematopoiesis

<table>
<thead>
<tr>
<th>Condition</th>
<th>Surgical Premature Menopause</th>
<th>Natural Premature Menopause</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard Ratio (95% CI)</td>
<td>Hazard Ratio (95% CI)</td>
</tr>
<tr>
<td>First cardiovascular disease diagnosis</td>
<td>2.21 (1.66-2.92)</td>
<td>1.60 (1.42-1.80)</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>3.76 (2.42-5.86)</td>
<td>1.81 (1.44-2.28)</td>
</tr>
<tr>
<td>Heart failure</td>
<td>2.74 (1.42-5.29)</td>
<td>1.56 (1.14-2.16)</td>
</tr>
<tr>
<td>Aortic stenosis</td>
<td>3.41 (1.27-9.16)</td>
<td>2.48 (1.62-3.80)</td>
</tr>
<tr>
<td>Mitral regurgitation</td>
<td>3.40 (1.41-8.27)</td>
<td>0.95 (0.52-1.74)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>1.87 (1.14-3.06)</td>
<td>1.44 (1.18-1.77)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>1.18 (0.38-3.66)</td>
<td>1.59 (1.12-2.28)</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>2.19 (0.70-6.83)</td>
<td>1.96 (1.27-3.03)</td>
</tr>
<tr>
<td>Venous thromboembolism</td>
<td>2.57 (1.41-4.67)</td>
<td>1.68 (1.29-2.20)</td>
</tr>
</tbody>
</table>

CHIP is more common among people living with HIV

CHIP is enriched for individuals with an unhealthy diet, and stratifies CHIP-associated CAD risk.

Germline genetic factors influence CHIP

TERT

KPNA4

TET2

MBD3

4,431 cases / 85,405 controls

Prognosis is worse in the setting of other cardiovascular conditions

Heart Failure

Overall survival of patients with **DNMT3A** or **TET2** mutations

- No mutation
- TET2/DNMT3A

Take home figure Overall survival of patients with **DNMT3A**- or **TET2**-CHP-driver mutations with a variant allele frequency ≥ 2% vs. patients without **DNMT3A** or **TET2** mutations. *Patients with follow-up <30 days have been excluded in order to remove mortality due to peri-procedural complications.*

Dorsheimer L, et al. *JAMA Cardio*. 2019

Aortic Stenosis

Conclusions

• Clonal hematopoiesis of indeterminate potential (CHIP) represents a new risk factor for ASCVD

• CHIP is not readily identifiable by current clinical assessments

• NLRP3/IL1B/IL6 axis inhibition may be a particularly effective strategy to reduce ASCVD risk conferred by CHIP

• CHIP may be implicated in other age-related cardiovascular condition
Clinical research coordinators
Phoebe Finneran, BS
Sara Haidermota, BS
Rachel Bernardo, BS

Research nurse
Tinamarie Desmarais, RN

Computational biologist
Akhil Pampana, MS

High school students
Akshaya Ravi

Undergraduate students
Adyant Shankar

Medical students
Abraham Cheloff, BS
Lily Dattilo, BS
Mark Trinder, BS
S. Maryam Zekavat, BS

Residents
Melvin Joice, MD
Maeve Jones-O’Connor, MBBS
Christopher Marnell, MD
Akhila Narla, MD
Sarah Urbut, MD PhD

Fellows
Romit Bhattacharya, MD
So Mi Jemma Cho, PhD
Katharine Clapham, MD
Thomas Gilliland, MD
Sumeet Khetarpal, MD PhD
Derek Klarin, MD
Satoshi Koyama, MD PhD
Cian McCarthy, MBBS
Tetsushi Nakao, MD PhD
Margaret Selvaraj, PhD
Aeron Small, MD
Md Mesbah Uddin, PhD
Zhi Yu, PhD

Instructors
Michael Honigberg, MD MPP
Leland Hull, MD
Kaavya Paruchuri, MD
Amy Sarma, MD

NHLBI R01HL142711 (Natarajan, Peloso)
NHLBI R01HL148050 (Natarajan, Ballantyne)
NHLBI R01HL151283 (Natarajan)
NHLBI R01HL127564 (Natarajan, Peloso)
NHLBI R01HL148565 (Reiner, Whitsel)
NHLBI R01HL135242 (Nguyen)
NHLBI R01HL151152 (Kooperberg)
NIDDK R01DK125782 (Kelly)
Leducq TNE-18CVD04 (Tall, Sohnlein)
MGH Fireman Chair (Natarajan)

http://natarajanlab.mgh.harvard.edu/