Disentangling Delirium and Dementia

Sharon K. Inouye, M.D., M.P.H.
Professor of Medicine
Beth Israel Deaconess Medical Center
Harvard Medical School
Milton and Shirley F. Levy Family Chair
Director, Aging Brain Center
Hebrew SeniorLife
Disclosures

• No conflicts of interest to report

• Current funding sources:
 – National Institutes of Health Grants No. R01AG044518 (SKI/RNJ), R24AG054259 (SKI), K07AG041835 (SKI), P01AG031720 (SKI)
 – John A. Hartford Foundation

• Hold Milton and Shirley F. Levy Family Chair at Hebrew SeniorLife/Harvard Medical School
DSM5 CRITERIA FOR DELIRIUM

• Disturbance in attention and awareness
• Disturbance develops acutely and tends to fluctuate
• An additional disturbance in cognition, (e.g., memory deficit, language, visuoperceptual)
• Not better explained by a preexisting dementia
• Not in face of severely reduced level of arousal or coma
• Evidence of underlying organic etiology(-ies)

[Characteristics of transience and reversibility]

Used with permission. American Psychiatric Association, 2013
DSM5 CRITERIA FOR DELIRIUM

• Evidence of significant cognitive decline from previous level in one or more cognitive domains
• Cognitive deficits interfere with independence in everyday activities
• Deficits do not occur exclusively in the context of a delirium
• Deficits are not better explained by another mental disorder (e.g., major depressive disorder, schizophrenia)

[Characteristics of chronic and progressive]

Used with permission. American Psychiatric Association, 2013
Differential Diagnosis: Delirium vs. Dementia

<table>
<thead>
<tr>
<th>Feature</th>
<th>Delirium</th>
<th>Dementia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>Typically abrupt</td>
<td>Insidious and progressive</td>
</tr>
<tr>
<td>Duration</td>
<td>Hours to day</td>
<td>Months to years</td>
</tr>
<tr>
<td>Attention</td>
<td>Reduced ability to sustain or shift attention</td>
<td>Normal unless severe dementia</td>
</tr>
<tr>
<td>Consciousness</td>
<td>Fluctuating, reduced level of consciousness</td>
<td>Generally intact</td>
</tr>
<tr>
<td>Speech</td>
<td>Can be incoherent, disorganized</td>
<td>Ordered, may have aphasia</td>
</tr>
<tr>
<td>Psychomotor subtypes</td>
<td>Hyperactive/hypoactive forms often present</td>
<td>Psychomotor changes absent or unpredictable</td>
</tr>
</tbody>
</table>

Oh ES...Inouye SK. JAMA 2017; 318:1161-74
Interface of Delirium and Dementia

• Often coexist clinically—delirium superimposed on dementia
• Dementia a leading risk factor for delirium
• Delirium associated with markedly increased risk for dementia (OR=12.5)
• Delirium worsens the cognitive trajectory of dementia
• Pathophysiologic overlap with shared mechanisms

Witlox JAMA 2010; Fong Lancet Neurology 2015
Evidence for Inter-Relationship
“Stacking the Evidence”

• Epidemiologic
• Clinicopathological
• Mechanistic

• Biomarkers → Dr. Marcantonio
• Neuroimaging → Dr. Asthana
Epidemiologic Evidence
Dementia: A Risk Factor for Delirium

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Delirium (%)</th>
<th>Adjusted risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennedy 2014</td>
<td>Emergency department, N=700</td>
<td>9%</td>
<td>OR 4.3 (2.2-8.5)</td>
</tr>
<tr>
<td>Koster 2013</td>
<td>Elective cardiac surgery, N=300</td>
<td>17%</td>
<td>OR 4.5 (1.9-13)</td>
</tr>
<tr>
<td>Moerman 2012</td>
<td>Acute hip fracture, N=378</td>
<td>27%</td>
<td>OR 2.8 (1.7-4.6)</td>
</tr>
<tr>
<td>Bo 2009</td>
<td>Medical or geriatric ward, N=252</td>
<td>11%</td>
<td>RR 2.1 (1.6-2.6)</td>
</tr>
<tr>
<td>Rudolph 2009</td>
<td>Cardiac surgery, development N=122; validation N=109</td>
<td>44%</td>
<td>RR 1.3 (1.0-1.7)</td>
</tr>
<tr>
<td>Kalisvaart 2006</td>
<td>Elective hip surgery, N=603</td>
<td>12%</td>
<td>RR 5.5 (3.6-8.6)</td>
</tr>
<tr>
<td>Wilson 2005</td>
<td>Acute medical ward, N=100</td>
<td>12%</td>
<td>OR 3.2 (1.2-9.0)</td>
</tr>
<tr>
<td>O’Keeffe 1996</td>
<td>Acute medical admissions, N=225</td>
<td>28%</td>
<td>OR 4.8 (2.0-11.6)</td>
</tr>
<tr>
<td>Marcantonio 1994</td>
<td>Elective surgery, N=1341</td>
<td>9%</td>
<td>OR 4.2 (2.4-7.3)</td>
</tr>
<tr>
<td>Pompei 1994</td>
<td>Acute medical/surgical, development N=432; validation N=323</td>
<td>15%</td>
<td>OR 3.6 (2.1-6.2)</td>
</tr>
<tr>
<td>Inouye 1993</td>
<td>Acute medical, development N=107; validation N=174</td>
<td>25%</td>
<td>RR 2.8 (1.2-6.7)</td>
</tr>
</tbody>
</table>

Fong TG et al. Lancet Neurology 2015; 14:823-32
Delirium: A Risk Factor for Dementia

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Dementia (%)</th>
<th>Adjusted risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFAS 2014</td>
<td>Population-based, N= 2197</td>
<td>23%</td>
<td>OR 8.8 (2.8-28)</td>
</tr>
<tr>
<td>BRAIN-ICU 2013</td>
<td>Multi-centre ICU admissions, N=821</td>
<td>_</td>
<td>-5.6 (-9.5 - -1.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>points per delirium-day</td>
</tr>
<tr>
<td>Gross 2012</td>
<td>Alzheimer’s clinic, N=263</td>
<td>27%</td>
<td>1.2 (0.5-1.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>points per year</td>
</tr>
<tr>
<td>Saczynski 2012</td>
<td>Elective CABG or valve surgery, N=225</td>
<td>_</td>
<td>Prolonged recovery</td>
</tr>
<tr>
<td>Vantaa 85+ 2012</td>
<td>Population-based, N=553</td>
<td>42%</td>
<td>OR 8.7 (2.1-35)</td>
</tr>
<tr>
<td>Fong 2009</td>
<td>Alzheimer’s clinic, N=408</td>
<td>_</td>
<td>2.4 (1.0-3.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>points per year</td>
</tr>
<tr>
<td>Bickel 2008</td>
<td>Elective hip surgery, N=200</td>
<td>53%</td>
<td>OR 41 (4.3-396)</td>
</tr>
<tr>
<td>Lundstrom 2003</td>
<td>Acute hip fracture, N=78</td>
<td>88%</td>
<td>OR 5.7 (1.3-24)</td>
</tr>
</tbody>
</table>

Fong TG et al. Lancet Neurology 2015; 14:823-32
Adverse Outcomes with Delirium: Dementia

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Rate When Delirium:</th>
<th>No. Studies</th>
<th>Risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present n/N (%)</td>
<td>Absent n/N (%)</td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>217/714 (30%)</td>
<td>616/2243 (27%)</td>
<td>7 HR= 2.0 (1.5-2.5)</td>
</tr>
<tr>
<td>Institutionalization</td>
<td>176/527 (33%)</td>
<td>219/2052 (11%)</td>
<td>9 OR=2.4 (1.8-3.3)</td>
</tr>
<tr>
<td>Dementia</td>
<td>35/56 (63%)</td>
<td>15/185 (8%)</td>
<td>2 OR = 12.5 (1.9-84)</td>
</tr>
</tbody>
</table>

Ref: Witlox J et al. JAMA 2010;304:443-51
Clinicopathological Evidence

- VANTAA 85+ study: population-based, N=553
- Strongest relationship between incident dementia and pathologic measures (tau, amyloid, vascular, Lewy body) in persons *without delirium*
- When delirium included in models, no association with pathologic markers detectable
- Suggestion that pathologic substrates for delirium may be different from conventional dementia pathology.

Mechanistic Evidence

• Animal models and tissue culture studies
• Inflammation: animal models with vulnerable brains administered inflammatory challenge—Lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C) —leading to neuronal death/microglial activation and persistent cognitive deficits
• Microglial priming: Cox 1 and prostaglandin inhibitors protect against LPS-induced cognitive deficits
• Inhalational anesthetics: may induce apoptosis and neurotoxicity, along with changes consistent with AD

Fong TG et al. Lancet Neurology 2015; 14:823-32
Does delirium lead to long-term cognitive decline?
Impact of Delirium at 12 months

• **Aims:** Examine cognitive function over 12 months in 225 patients following elective cardiac surgery.

• **Main Results:**
 – Delirium occurred in 46% patients
 – Cognitive trajectory (by MMSE) characterized by abrupt initial decline followed by gradual recovery over 6 months
 – *Patients with prolonged delirium did not get fully back to baseline at 12 months*

Impact of Delirium at 12 months
(N=225 cardiac surgery patients)

Impact of Delirium at 36 months: SAGES Study

Aims: Examine cognitive trajectory over 36 months in 560 patients without dementia undergoing major elective surgery

Major results:
- Delirium occurred in 24% patients following major elective surgery. Cognitive function measured by GCP composite
- In delirium and non-delirium groups, acute cognitive decline at 1 month
- Non-delirium group, recovers above baseline at 2 months, then gradual decline out to 36 months (above baseline)
- Delirium group, recovers above baseline at 2 months, then gradual decline out to 36 months substantially below baseline, with a slope equivalent to that seen in MCI

LONG-TERM COGNITIVE TRAJECTORY AFTER ELECTIVE SURGERY

Impact of Delirium Severity over 36 months: SAGES Study

Aims: Examine cognitive trajectory over 36 months in 560 SAGES patients without dementia—stratified by tertiles of delirium severity (CAM-S peak)

Major results:
• Delirium occurred in 24% patients following major elective surgery. Long-term cognitive decline (LTCD) measured by slope of GCP composite
• Delirium severity demonstrates a threshold effect with the highest level of severity (sum of CAM-S ≥17) being associated with greatest degree of LTCD at 36 months
• All other groups were not significantly different
• Slope of cognitive decline in highest severity group is \(-0.82\) GCP points/year—equivalent to that of dementia. Important exposure-response relationship.

Impact of Delirium Severity over 36 months: SAGES Study

Delirium outcomes in persons with Alzheimer’s disease

(N=771 ADRC patients)

<table>
<thead>
<tr>
<th>Adverse Outcomes at 12 months</th>
<th>Adjusted Relative Risk (95% CI)</th>
<th>Attributable Risk %</th>
<th>Risk Attributable to Delirium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>5.4 (2.3-12.5)</td>
<td>6.2</td>
<td>1 in 16</td>
</tr>
<tr>
<td>Institutionalization</td>
<td>9.3 (5.5-15.7)</td>
<td>15.2</td>
<td>1 in 7</td>
</tr>
<tr>
<td>Cognitive Decline at 1-year</td>
<td>1.6 (1.2-2.3)</td>
<td>20.6</td>
<td>1 in 5</td>
</tr>
<tr>
<td>Any Adverse Outcome</td>
<td>2.2 (1.8-2.7)</td>
<td>12.4</td>
<td>1 in 8</td>
</tr>
</tbody>
</table>

Delirium Accelerates Cognitive Decline Trajectory in Dementia
[Nested cohort of 263 hospitalized patients with AD]

Gross AL Arch Intern Med 2012; 172; 1324; Fong TG Neurology. 2009;72:1570
What we don’t know

• Concept of *complicated delirium*: Delirium that leads to long-term cognitive decline (Akin to injurious falls)
 – Who is at-risk?
 – What are the causes/mechanisms?
 – Are there complex, multifactorial relationships (genetic, environmental, mediation effects between vulnerability and precipitating factors)?
 – How do we prevent?
 – How do we treat?
Preventing delirium may offer the unprecedented opportunity to prevent or ameliorate future cognitive decline.