Cardiovascular Markers and HIV

“Yep, son, we have met the enemy and he is us!”
Pogo to Porky (as written by Walt Kelly), 1971

Russell P. Tracy, Ph.D.
Professor of Pathology and Biochemistry
University of Vermont College of Medicine
http://www.med.uvm.edu/lcbr
russell.tracy@uvm.edu

CVD, Inflammation, and Aging

General issues concerning age-related decline in function

How long should we live?
Forces that have shaped our genetic architecture

Atherosclerosis as a Model for Age-Related Functional Decline: Key aspects

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid Translocation to media</td>
<td>Driven at least in part by Mass Action; mechanism(s) uncertain</td>
</tr>
<tr>
<td>Lipid retention</td>
<td>Driven at least in part by GAGs;</td>
</tr>
<tr>
<td>Lipid modification</td>
<td>Driven at least in part by oxidative stress;</td>
</tr>
<tr>
<td>Activation of innate immunity</td>
<td>System in balance?</td>
</tr>
</tbody>
</table>

Yes: no atherosclerosis
No: progression to activation of adaptive immunity and atherosclerosis

Very rapid: explosive development of atheroma → vulnerable plaque & MI
More slowly: chronic development of sclerosis → heart failure

The interplay of atherothrombosis and plasma risk markers

Association of Markers of Inflammation With Chronic Disease

The “Inflammation Hypothesis” of Chronic Disease and Aging

1. In providing a necessary “interface” to the environment, “inflammation” can result in damage.
2. The better our responses and/or the more environmental stress to which we respond, the more damage we do.
3. We trade short-term benefit for long-term damage; a good trade from an evolutionary standpoint
Humans as integrated organisms: a decline in one system affects all
Is vascular decline of particular importance?

"Longevity is a vascular question, which has been well expressed in the axiom: 'a man is as old as his arteries.' William Osler, 1892.

HEALTH

VASCULATURE
- Provision of Nutrients
- Removal of Waste
- Pump function (arterial emptying)

HEART
- Pump function (arterial filling)

LUNG
- Provision of key nutrient: O2
- Elimination of CO2 waste

KIDNEY
- Elimination of waste
- RAS function
- Fluidic control

BRAIN
- Cognitive function
- Endocrine function

SKELETON
- Structure
- Hematopoiesis
- Source of pain

PANCREAS
- Digestive function
- Key endocrine function

THYROID
- Metabolic regulation

LIVER
- Coagulation
- Detoxification

ADIPOSE TISSUE
- Energy storage
- Endocrine function

THYMUS
- Immune Function

There's a lot of vascular disease in the elderly

<table>
<thead>
<tr>
<th>Controls</th>
<th>Incident Angina</th>
<th>Incident MI</th>
<th>Incident Stroke</th>
<th>CVD-free</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Increased Inflammation in the Elderly:
Are Diseases of Older Age the Cause?

Is Vascular Disease Particularly Important?

Four Levels of “Inflammation” Affecting Circulating Biomarkers and Mediators

1. Remodeling Associated With Growth / Aging: Initially improved organ function, but in older age decreased organ function; cause?

2. Physiology-Enabled: adiposity, insulin resistance

3. Wound Repair: decreased organ function (e.g., scar tissue)

4. Response to Chronic Pathogenic Stimulation:
 - viral infections, e.g., HIV-based lymphatic fibrosis
 - lipid infiltration, e.g., atherosclerosis
 - toxin exposure, e.g., alcoholic cirrhosis, cigarette smoke

5. Response to the Presence of Disease:
 - Atherosclerotically damaged blood vessels → inc. coagulation

Bone Remodeling: a Model for a Lifetime of Change?

- In bone remodeling, we resorb and replace ~10% of our skeleton/year;
- Other tissues are slower (brain) or faster (intestinal epithelium);
- Overall rates in all tissues: ??
- This is inflammation too....
Inflammatory Cytokines Go Up with Age

InChianti: Information on inflammatory markers, cardiovascular risk factors, and diseases was collected in 595 men and 748 women sampled from the general population (age, 20-102 years).

Figure 1: Mean values of inflammatory markers according to sex and age group, expressed as number of standard deviations from the population mean, male; female. * p <0.05, ** p <0.01, *** p <0.001. Adiposity-related proinflammatory changes in the young start at an early age.

Adiposity-related proinflammatory changes in the young start at an early age

<table>
<thead>
<tr>
<th>BOYS</th>
<th>GIRLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1070.2</td>
</tr>
<tr>
<td>SBP median</td>
<td>1070.2</td>
</tr>
<tr>
<td>HDL-cholesterol</td>
<td>1070.2</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>1070.2</td>
</tr>
<tr>
<td>Leptin</td>
<td>1070.2</td>
</tr>
<tr>
<td>HMW</td>
<td>1070.2</td>
</tr>
</tbody>
</table>

Correlation Coefficients Between LnCRP and CVD Risk Factors
Boys & Girls 3 to 17 Years of Age in NHANES 1999 to 2000

Ford ES. Circulation. 2003;108:1053-1058
Jarvisalo et al., ATVB 22:1323, 2002

Little/No Increase with Age After Adjusting for CVD

Age regression coefficients and their 95% CIs estimated from linear models predicting level of inflammatory markers:
• "a" estimates the crude affect of age;
• "b" is adjusted for cardiovascular risk factors;
• "c" is also adjusted for subclinical cardiovascular diseases;
• "d" is adjusted for CHD, CHF, stroke, PAD, COPD, diabetes, hypertension, osteoporosis, CFR, cancer, dementia, and depression.

R² values reported below the confidence interval are for the model used to estimate the age regression coefficients.

Ferrucci et al., Blood. 2005;105: 2294-2299

Fibrinogen and CRP are independent biomarkers of early mortality in elderly men

Cardiovascular Health Study: N ~2500 men >65 years at baseline
The outcome is CVD mortality within 3 years of baseline

Heart rate ~ 20

Hazard Ratio

Type 2 diabetes
Congestive Heart Failure
Some cancers (short “lead times”)
Cognitive decline
Frailty
All-cause and CVD Death
All chronic diseases of old age?

Association of Markers of Inflammation With CVD Risk
SMART Case – Control Study

<table>
<thead>
<tr>
<th>Sampling Point</th>
<th>Biomarker</th>
<th>Deaths, Median (25th, 75th)</th>
<th>Controls, Median (25th, 75th)</th>
<th>Difference p-Value* after Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 0</td>
<td>CRP (ng/ml)</td>
<td>4.24 (2.97, 8.74)</td>
<td>3.21 (1.88, 8.18)</td>
<td>0.70 (0.70)</td>
</tr>
<tr>
<td></td>
<td>D-dimer (ug/ml)</td>
<td>3.48 (2.77, 8.30)</td>
<td>2.95 (2.14, 4.50)</td>
<td>0.53 (0.53)</td>
</tr>
<tr>
<td></td>
<td>IL-6 (pg/ml)</td>
<td>3.40 (2.77, 8.30)</td>
<td>2.95 (2.14, 4.50)</td>
<td>0.53 (0.53)</td>
</tr>
<tr>
<td></td>
<td>TNF-alpha (pg/ml)</td>
<td>3.40 (2.77, 8.30)</td>
<td>2.95 (2.14, 4.50)</td>
<td>0.53 (0.53)</td>
</tr>
<tr>
<td>Week 12</td>
<td>CRP (ng/ml)</td>
<td>4.24 (2.97, 8.74)</td>
<td>3.21 (1.88, 8.18)</td>
<td>0.70 (0.70)</td>
</tr>
<tr>
<td></td>
<td>D-dimer (ug/ml)</td>
<td>3.48 (2.77, 8.30)</td>
<td>2.95 (2.14, 4.50)</td>
<td>0.53 (0.53)</td>
</tr>
<tr>
<td></td>
<td>IL-6 (pg/ml)</td>
<td>3.40 (2.77, 8.30)</td>
<td>2.95 (2.14, 4.50)</td>
<td>0.53 (0.53)</td>
</tr>
<tr>
<td></td>
<td>TNF-alpha (pg/ml)</td>
<td>3.40 (2.77, 8.30)</td>
<td>2.95 (2.14, 4.50)</td>
<td>0.53 (0.53)</td>
</tr>
</tbody>
</table>

SMART: Risk of death associated with biomarker at study entrance

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Type of Study</th>
<th>25th Percentile (Reference)</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
<th>25th Percentile (Control)</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP</td>
<td>3.07</td>
<td>0.918</td>
<td>1.342</td>
<td>4.24</td>
<td>0.859</td>
<td>1.342</td>
<td>4.24</td>
<td>3.84 (1.85, 8.03)</td>
</tr>
<tr>
<td>D-dimer</td>
<td>0.53</td>
<td>0.289</td>
<td>0.418</td>
<td>0.70</td>
<td>0.289</td>
<td>0.418</td>
<td>0.70</td>
<td>1.18 (1.08, 1.29)</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.53</td>
<td>0.289</td>
<td>0.418</td>
<td>0.70</td>
<td>0.289</td>
<td>0.418</td>
<td>0.70</td>
<td>1.18 (1.08, 1.29)</td>
</tr>
<tr>
<td>TNF-alpha</td>
<td>0.53</td>
<td>0.289</td>
<td>0.418</td>
<td>0.70</td>
<td>0.289</td>
<td>0.418</td>
<td>0.70</td>
<td>1.18 (1.08, 1.29)</td>
</tr>
</tbody>
</table>

Issues to Consider in Viral Infection

- General features of viral infection
 - Tissue damage → activation of innate immunity
- Specific features of the infection; e.g., in HIV:
 - Loss of T helper function → opportunistic infections & loss of surveillance
 - Loss of lymph node function → general loss of adaptive immunity
 - Loss of GALT function → activation of coagulation
- Common co-infections; e.g., for HIV this might be HCV:
 - HCV → decreased liver function → "aging" & altered biomarker profile
- Therapy, again in HIV:
 - ART → decreased inflammation due to control of viral load & possible proinflammatory effects (? Mechanism)