

# Models and Studies of Aging:

# Adaptation to stress: Resilience

Thursday 9/22/2016 9:50-10:10 AM

### George A. Kuchel, MD, FRCP, AGSF

Citicorp Chair in Geriatrics and Gerontology Director, UConn Center on Aging Chief, Geriatric Medicine University of Connecticut Health Center <u>kuchel@uchc.edu</u>

## **Disclosures:**

- •Funding from NIH, NSF, HRSA, PCORI, CT State Stem Cell Initiative
- •Employed by the University of Connecticut
- •No funding from industry



### **References:**



OXFORD

Review

### Physical Resilience in Older Adults: Systematic Review and Development of an Emerging Construct

Heather E. Whitson,<sup>1,2,3,4</sup> Wei Duan-Porter,<sup>1,5</sup> Kenneth E. Schmader,<sup>1,2,3</sup> Miriam C. Morey,<sup>1,2,3</sup> Harvey J. Cohen,<sup>1,2,3</sup> and Cathleen S. Colón-Emeric<sup>1,2,3</sup>

### Report: NIA Workshop on Measures of Physiologic Resiliencies and Vulnerabilities in Human Aging

Hadley et al. (submitted)





# Constancy of the "milieu intérieur"



The constancy of the milieu supposes a perfection of the organism such that the external variations are at each instant compensated for and equilibrated....

The stability of the internal environment is the condition for free and independent life

Claude Bernard (1813—1878)



# Aging and Homeostasis



Besides more or less obvious physical changes in old age, physiological investigation may reveal increasing limitation of the effectiveness of homeostatic devices which keep the bodily conditions stable

Walter Bradford Cannon (1871–1945)



### Agenda:

- Multifactorial complexity of aging trajectories and disease behavior
- Homeostasis and Homeostatic Dysregulation:
  - Concepts and Terms
  - Impact of Aging on Specific Challenges
- Resilience:
  - Definition(s)
  - Recent workshops and conferences
  - Concepts related to resilience
  - Factors influencing resiliencies in aging
  - Considerations for animal and human studies
- Resilience and Precision Medicine



# Multifactorial complexity of aging trajectories and disease behavior in old age



The downward path: a seventeenth-century view of a man's progression through life.



Center on Aging UCONN HEALTH CENTER







### Frailty as a vulnerability and as a defined phenotype





CONN

CENTER

### **Fried Frailty Phenotype** 1.Weight loss 2.Sense of exhaustion 3.Poor grip strength

4.Slow walking speed

5. Poor physical activity



### Sarcopenic Obesity 1.Obesity 2.Poor physical performance 3.Low muscle mass 4.Poor muscle quality

### Resiliency and Aging: It's a tough world out there



# Dictionary Definitions of Resiliency (Mirriam-Webster)

1. The ability to become strong, healthy or successful again after something bad happens

2. The ability of something to return to its original shape after it has been pulled, stretched, pressed, bent, etc.

# Scientific Approaches to Resiliency

 Established interest in role of psychosocial factors on resilience to age-related social and behavioral stressors

2. Focus of August 2015 NIA workshop of resiliencies to physical stressors

# Resiliency: Must Consider the System, the Stressor, the Response and the Outcome



Amazingly timed is fun @PerfectlyTimedPics.com

Homeostenosis represents a diminished capacity to respond to varied homeostatic stressors:

- Elevated or lowered ambient temperature
- Elevated or lowered serum glucose
- Fluid depletion or fluid overload
- Orthostasis
- Loss of neural networks (disease, receptor blockade)
- Sepsis
- Trauma
- Bedrest
- Hip Fracture
- Chemotherapeutic agents

# Taking it All Apart

- What are some of the key physiologic features of homeostatic dysregulation of aging?
- What are the physiologic features of resilience?
- Is it possible to identify shared or common physiologic motifs that emerge in response to different stressors and across different systems?

### Impact of aging on resilience: handling a glucose challenge



FIGURE 1 (A) Glucose levels during the oral glucose tolerance tests in nonelderly  $(\bullet)$  and elderly (O) subjects. (B) Insulin levels during the oral glucose tolerance tests in nonelderly  $(\bullet)$  and elderly (O) subjects. Results are plotted as mean±SEM.



- P < 0.01.
- P < 0.005.
- § P < 0.001.

### Impact of aging on resilience: orthostasis



Fig. 1. Effect of standing and supine recovery on plasma NE in young and old subjects. Data are plotted as mean  $\pm$  SE for 6 young and 11 elderly subjects, except at 8 min when values represent mean of 2 young and 6 elderly. Supine recovery value was obtained after 15 min. Statistical significance refers to comparisons between young and old.



Young et al. Metabolism 1980

### Impact of aging on resilience: cold pressor test



Fig. 1. Plasma norepinephrine levels (pg/ml) in young (Y; open circles, n = 19), early aging (EA; open boxes, n = 28), and advanced aging (AA; crossed boxes, n = 8) subjects before and after cold pressor test (1 min cold water hand immersion beginning at arrow). Bars show SEM. Letters show differences between groups at the same time point (a = AA > Y, EA; b = EA > Y; all comparisons p < 0.05 by Newman Keuls post-hoc tests).

Pascualy et al. Neurobiology of Aging 1999

### Impact of aging on resilience: HPA axis responses





Homeostatic Dysregulation of Aging: Overarching Theme(s)

- 1. Loss of Physiologic Reserve
- 2. Enhanced Basal Activity
- 3. Lower End-Organ Responsiveness
- 4. Higher Basal Activity
- 5. Loss of Negative Feedback Inhibition

### Shared Features

- Shared across different stressors (e.g. emotional stress, orthostasis, oral glucose)
- Shared across different systems (e.g. SNS, HPA, immuneinflammatory pathways)

### Overarching Themes in Homeostatic Dysregulation of Aging: Stressor-Related Considerations: Magnitude of Stressor



Effects of HCTZ and chlorthalidone on SBP as a function of daily dose (mg).

Carter et al. Hypertension. 2004;43:4-9

Overarching Themes in Homeostatic Dysregulation of Aging: Stressor-Related Considerations: Co-existing stressors



FIGURE 1. Change in systolic blood pressure (SBP) during 60-degree upright tilt in six young (Y) and six old (O) subjects before (PRE) and after (POST) diuresis. Asterisk indicates significant change from prediuresis values (p < 0.02).

Shannon et al. Hypertension. 1986

### Overarching Themes in Homeostatic Dysregulation of Aging: Response-Related Considerations



# Pulling It All Together

- No cell, organ or system works in isolation from other cells, organs and systems
- Complex inter-relationships exist at all these levels mediated by shared molecules, proximal risk factors, and distal outcomes with bidirectional feedback loops
- Emergence permits larger entities or patterns to arise through interactions among smaller or simpler entities that themselves do not exhibit such properties
- This defines our uniqueness as humans and as individuals
- Systems-based perspectives are key to understanding and predicting resilience in old age

### What it will take to really move forward:

- Need to address variability
- Not just at baseline, but also when challenged
- Need to address ability to maintain or regain normal homeostasis when challenged by a stressor
- NIA Workshop, "Measures of Physiologic Resiliencies and Vulnerabilities in Human Aging" August 26-27, 2015



### Lack of resilience in aging when:

- Unable to maintain core body temperature in face of elevated or lowered ambient temperature (hyper- or hypothermia)
- Unable to handle oral glucose load (poor OGT)
- Changes are often exagerated with delayed return to baseline



### Lack of resilience in aging when:

- Declines in negative feedback result in a system being less resilient with exagerated responses and delays in return to baseline
- Examples include decreased ability of cortisol to dampen its own release and diminished ability of inflammatory responses to shut off





Dynamical Responses to Stressors Source: Varadhan et al. MAD 2008

## **Examples of Clinically Relevant Resilience:**

- Avoid fall on uneven or slippery surface surface
- Avoid syncope on standing
- Recover physical function after bedrest
- Avoid delirium following anasthesia and surgery
- Permit rapid and effective wound healing
- Avoid or rapidly recover from influenza infection
- Avoid bone marrow toxicity of chemotherapeutic agents



## Final Messages Regarding Resilience:

- Resilience is not merely the absence or converse of frailty
- Do not fear but embrace complexity and increased variability with aging
- Studies of dynamic responses to stressors often offer insights into aging that would not be observed when studying individuals under "ideal" basal conditions
- Such dynamic studies may uncover additional variability between older individuals in their response capacities
- Added inter-individual variability in responses to stressors may offer novel insights and predictive capacities in terms of risk of future resilient responses ....and clinical outcomes

