Diabetes in Older Adults

NICOLAS MUSI, MD
Barshop Institute for Longevity and Aging Studies
San Antonio GRECC
University of Texas Health Science Center
San Antonio, TX
Incidence (per 1,000) of major diabetes complications among adults with diabetes, by age, 2009.

Jeffrey B. Halter et al. Diabetes 2014;63:2578-2589
Impaired Glucose Tolerance (Prediabetes)

Undiagnosed Type 2 Diabetes

Diagnosed Type 2 Diabetes

Prevalence of Type 2 Diabetes, Undiagnosed Diabetes, and IGT

Adapted from Harris MI. Consultant 1997;37(Suppl):S9.
One in every two people age 65 and older have diabetes or pre-diabetes.
Why Diabetes Risk Increases With Age?
Type 2 Diabetes in Aging

Insulin Resistance

- β Cell Failure
- Low Physical Act.
- Sarcopenia
- Decreased Insulin Action
- Visceral Adiposity
Effect of Age on Insulin Secretion

- Young
- Older Normal Glucose Tolerant
- Old Impaired Glucose Tolerant

Blood Glucose (mg/dl)

Insulin (mU/ml)
Metabolic Signaling Pathways in Aging

- **Glucose**
 - GLUT4
 - mTOR
 - Ribosome (Synthesis)
 - Proteasome (Breakdown)

- **Insulin**
 - IRS
 - Akt
 - MuRF1
 - Atrogin

- **TLR4**
 - TNF-R

- **Fatty Acids**
 - Lipids

- **Mitochondrial Dysfunction**
 - ROS
 - Ub
 - Ub

- **IKK-NFκB**
Effect of Age on Insulin Sensitivity

Insulin Sensitivity (M)

Young
BMI=23.8

(27 years)

Older
BMI=25.1

(70 years)

Petersen, Science, 2003
Effect of Age on Lipid Content

Magnetic Resonance Spectroscopy

Intramyocellular Lipid Content

EMCL-CH₂
IMCL-CH₂
EMCL-CH₃
IMCL-CH₃
PPM

Young (27 years)
Older (70 years)

Petersen, Science, 2003
Effect of age on Mitochondrial ATP Production

Luciferase assay (ATP synthesis rate)

*P<0.05 vs. older group.
Effect of aerobic exercise on Mitochondrial ATP production in older subjects

- Before exercise
- After exercise

ATP synthesis rate (nmol/mg protein/min)

S+R: Succinate + Rotenone; G+M: Glutamate + Malate; P+M: Pyruvate + Malate

*, P<0.05 vs. older group before exercise.
Factors involved in mitochondrial biogenesis

Modified from Vina et al Adv Drug Del Rev. 2009
LPS Concentration in Aging

Ghosh et al, J Geron (2014)
Intestinal Barrier Dysfunction and Aging

Rera, PNAS (2012)

Intestinal Barrier Dysfunction Predicts Death
How should older adults be treated for diabetes?
Goals of Treatment (Tight Control?)

Consider:

1) Functional Status
2) Life expectancy
3) Cognitive Function
4) Clinical Heterogeneity (prone to complications?)
Does every diabetic person develop (mv) complications?
 No - approximately 20-40%

How long does it take to develop (mv) diabetic complications?
 15 years, on average

How much does the A1c level matter?
 It matters - a lot
How long does it take to develop diabetic complications?
How much does the A1c level matter?

Relationship of HbA₁C to Risk of Microvascular Complications

Diabetes Control and Complications Trial (DCCT)

Kaplan-Meier Survival Curves by Frailty Status

Espinoza, Hazuda (SALSA)
Recommendations (ADA, AGS)

Goals of Treatment (Tight Control?)

- Functional, Cognitively Intact, Significant Life Expectancy:
 - Similar Goals as Younger Person
 - A1c ~ 7%
Goals of Treatment (Tight Control?)

Decreased Function/Cognition, Short Life Expectancy:

- **Glycemic Control can be Relaxed**
- **Avoid Hyperglycemic Complications!**
Antihyperglycemic therapy T2DM (ADA Standards, 2016)

Healthy eating, weight control, increased physical activity, and diabetes education

<table>
<thead>
<tr>
<th>Metformin</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
</tr>
<tr>
<td>low risk</td>
</tr>
<tr>
<td>neutral / loss</td>
</tr>
<tr>
<td>GI / lactic acidosis</td>
</tr>
<tr>
<td>low</td>
</tr>
</tbody>
</table>

If A1C target not achieved after ~3 months of monotherapy, proceed to 2-drug combination (order not meant to denote any specific preference—choice dependent on a variety of patient- and disease-specific factors):

- **Metformin +**
 - **Sulfonylurea**
 - high
 - moderate risk
 - gain
 - hypoglycemia
 - low
 - **Thiazolidinedione**
 - high
 - low risk
 - gain
 - edema, HF, fx
 - low
 - **DPP-4 inhibitor**
 - Intermediate
 - low risk
 - neutral
 - rare
 - high
 - **SGLT2 inhibitor**
 - Intermediate
 - low risk
 - loss
 - GL, dehydration
 - high

If A1C target not achieved after ~3 months of dual therapy, proceed to 3-drug combination (order not meant to denote any specific preference—choice dependent on a variety of patient- and disease-specific factors):

- **Metformin +**
 - **Sulfonylurea**
 - high
 - moderate risk
 - gain
 - hypoglycemia
 - low
 - **Thiazolidinedione**
 - high
 - low risk
 - gain
 - edema, HF, fx
 - low
 - **DPP-4 inhibitor**
 - Intermediate
 - low risk
 - neutral
 - rare
 - high
 - **SGLT2 inhibitor**
 - Intermediate
 - low risk
 - loss
 - GL, dehydration
 - high
 - **GLP-1 receptor agonist**
 - highest
 - high risk
 - gain
 - hypoglycemia
 - variable

If A1C target not achieved after ~3 months of triple therapy and patient (1) on oral combination, move to injectables; (2) on GLP-1-RA, add basal insulin; or (3) on optimally titrated basal insulin, add GLP-1-RA or mealtimes insulin. In refractory patients consider adding TZD or SGLT2-i:

- **Metformin +**
 - **Basal insulin +**
 - **Mealtime insulin** or **GLP-1-RA**
Remaining Questions About DM in Older Adults

- Epidemiology of diabetes and complications
- Etiology
- Screening and diagnosis
- Preventative strategies (lifestyle and pharmacological)
- Treatment – goals, target, and interventions
- Clinical trials for prevention and treatment
- DM complications