EXPOSOME AS A STRESSOR

October 12, 2022

Overview of the Resilience World – State of the Science
AGS/NIA R13 Bench-to-Bedside Conference Series

Amy Kind, MD, PhD
University of Wisconsin School of Medicine and Public Health
FUNDING DISCLOSURES

NIH/National Institute on Aging

NIH/National Institute on Minority Health and Health Disparities

Alzheimer's Association

Amy Kind, MD, PhD
amy.kind@wisc.edu
EXPOSOME

The measure of all the exposures of an individual in a lifetime and how those exposures relate to health*

*The National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC).
https://www.cdc.gov/niosh/topics/exposome/default.html#:~:text=The%20exposome%20can%20be%20defined.from%20environmental%20and%20occupational%20sources., Accessed 4/20/2021
Exposome

- Factors external to the biological individual
- Diverse factors ranging from microbiome to structural inequity
Hill, Perez-Stable, Anderson, Ethnicity and Disease, 2015
NIA HEALTH DISPARITIES FRAMEWORK

ENVIRONMENTAL

SOCIOCULTURAL

BEHAVIORAL

BIOLOGICAL

LIFE COURSE

Hill, Perez-Stable, Anderson and Bernard, *Ethnicity and Disease*, 2015
Conditions in the environments in which people are born, live, work, play, worship, and age that impact a wide array of health, functioning, quality-of-life outcomes and risks.*

The HOLC maps are part of the records of the FHLBB (RG195) at the National Archives II Archived 2016-10-11 at the Wayback Machine.
NIH HEALTH DISPARITIES PRIORITY POPULATIONS

- Hispanics/Latinos
- American Indians/Alaskan Natives
- Blacks/African Americans
- Asian Americans
- Native Hawaiians and Other Pacific Islanders
- Socioeconomically Disadvantaged Populations
- Rural Populations
- Disability Populations
- Sexual and Gender Minorities
- Others

Intersectionality

Hill, Perez-Stable, Anderson and Bernard, Ethnicity and Disease, 2015; https://www.nia.nih.gov/research/osp-framework
1. Quantifying exposures

- Rigor, reproducibility, validity, generalizability, harmonizability
- Single time point (easier)
- Life course aligned (harder)

2. Linking exposome to biology

- Methodological considerations
- Infrastructure (technical, legal, administrative)
- Multi-disciplinary expertise

3. Reporting for a diverse array of stakeholders
1. Quantifying exposures

- Rigor, reproducibility, validity, generalizability, harmonizability
- Single time point (easier)
- Life course aligned (harder)
EXAMPLE: QUANTIFYING EXPOSOME USING THE AREA DEPRIVATION INDEX (ADI)*

- ADI construction
 - 17 measures of social determinants of health across small, population sensitive areas
 - Ranked score
 - Time concordant

- Current ADI measures for full US available through the Neighborhood Atlas®*

- Similar metrics available in most countries

- “Microtargeting”

*Kind and Buckingham, New England Journal of Medicine, 2018
Ethical Allocation of COVID Therapies
 • Example: Pennsylvania

COVID Vaccine Resource Targeting
 • Example: Alaska

Efficiently Aligning Health System Resources to Needs
 • Example: US Centers for Medicare and Medicaid Services (CMS)
 • 2022 ACO Realizing Equity, Access, and Community Health (REACH) Model

Health Equity Benchmark Adjustment

ACO REACH includes a benchmark adjustment that increases benchmarks for ACOs serving higher proportions of underserved beneficiaries.

CMS will stratify all beneficiaries aligned to ACO REACH using a composite measure of underservice that incorporates a combination of:

- **Area Deprivation Index**: Area-level measure of local socioeconomic factors correlated with medical disparities and underservice.
- **Dual Medicaid Status**: Beneficiary-level measure of economic challenges affecting individuals’ ability to access high quality care.

<table>
<thead>
<tr>
<th>Percentile Score from 1-100</th>
<th>25 Point Adjustment for Full or Partial Dual Eligibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>91st – 100th Percentile (Top Decile)</td>
<td>+$30 PBPM Adjustment</td>
</tr>
<tr>
<td>51st – 90th Percentile (Middle 4 Deciles)</td>
<td>No Adjustment</td>
</tr>
<tr>
<td>1st – 50th Percentile (Bottom 5 Deciles)</td>
<td>-$6 PBPM Adjustment</td>
</tr>
</tbody>
</table>

1. CMS may explore other variables to include in this assessment and will notify applicants prior to the start of PY2023 if any other variables are included.

*2022 ACO Realizing Equity, Access, and Community Health (REACH) Model [https://innovation.cms.gov/media/document/aco-reach-fin-meth-webinar-slides]
EXAMINING THE EXPOSOME

1. Quantifying exposures
 • Rigor, reproducibility, validity, generalizability, harmonizability
 • Single time point (easier)
 • Life course aligned (harder)

2. Linking exposome to biology
 • Methodological considerations
 • Infrastructure (technical, legal, administrative)
 • Multidisciplinary expertise

3. Reporting for a diverse array of stakeholders
SOCIAL-BIOLOGICAL PHENOTYPING

- Facilitate mechanistic health disparities research
- Link exposures to biological process
- Expand the potential of existing programs in completely new ways

Exposome

© Preliminary data, CHDR, 2022 – Do not reproduce
EXAMINING THE EXPOSOME

1. Quantifying exposures
 - Rigor, reproducibility, validity, generalizability, harmonizability
 - Single time point (easier)
 - Life course aligned (harder)

2. Linking exposome to biology
 - Methodological considerations
 - Infrastructure (technical, legal, administrative)
 - Multi-disciplinary expertise

3. Reporting for a diverse array of stakeholders
- N=453 decedents who donated their brain to Wisconsin or University California San Diego ADRC brain banks, 1993-2016
- No social factor characterization available
- Residential address at death geocoded, linked to neighborhood disadvantage by ADI
- Neuropathologic features drawn from National Alzheimer's Coordinating Center and autopsy reports
Living in the most disadvantaged neighborhood decile was associated increased odds of AD neuropathology
Aim 1: Determine the impact of the **cumulative dose and timing** of neighborhood disadvantage exposure (indexed by ADI), on **cognitive function and change** over time.

Aim 2: on AD-specific markers indexed by neuroimaging (**amyloid and tau PET**) and the secondary outcomes of vascular burden and volumetric MRI; and

Aim 3: on **neuropathologic tissue features and diagnosis**.

Aim 4: Using existing ADRC data and newly collected survey data, define the extent to which individual race/ethnicity, age, sex, income, education, comorbidity and health-behaviors mediate these relationships.
• Multi-site Protected Health Information (PHI) is required for many disparities aligned life-course exposome assessments

• Requires high-security, HIPPA compliant administrative, legal and cyber infrastructure

• Substantial undertaking
Gap: Exposome Measurement
- Promote development and availability of rigorous, harmonizable life-course aligned exposome measures

Gap: Standardizing Social-Biological Phenotyping
- Develop processes and infrastructure to promote more routine inclusion of exposome in traditional biological-focused assessments
- Increase scientific capacity to perform this work - multi-disciplinary teams

Gap: Health Resilience in Adverse Exposome
- Identifying factors, interventions that promote health in adverse exposome

Many Other Gaps: Exposome as an Emerging Field
<table>
<thead>
<tr>
<th>ADRC</th>
<th>Participating Components*</th>
<th>Site PI</th>
<th>Site Co-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Wisconsin</td>
<td>BB/CC</td>
<td>Amy Kind/Barb Bendlin (MPI)</td>
<td>Vikas Singh, Menggang Yu</td>
</tr>
<tr>
<td>Banner Alzheimer’s Institute</td>
<td>BB/CC</td>
<td>Eric Reiman</td>
<td>Thomas Beach, Kwei Chen</td>
</tr>
<tr>
<td>Boston University</td>
<td>BB/CC</td>
<td>Maureen O’Connor</td>
<td>Jonathan Jackson</td>
</tr>
<tr>
<td>Emory University</td>
<td>BB/CC</td>
<td>Felicia Goldstein</td>
<td></td>
</tr>
<tr>
<td>Indiana University</td>
<td>BB/CC</td>
<td>Shannon Risacher</td>
<td>Andrew Saykin, Liana Apostolova</td>
</tr>
<tr>
<td>Johns Hopkins University</td>
<td>BB/CC</td>
<td>Corrine Pettigrew</td>
<td></td>
</tr>
<tr>
<td>Mount Sinai</td>
<td>BB/CC</td>
<td>Mary Sano</td>
<td>Carolyn Zhu, Judith Neugroschi</td>
</tr>
<tr>
<td>New York University</td>
<td>BB/CC</td>
<td>Josh Chodosh, Thomas Wisniewski</td>
<td>Karyn Marsh</td>
</tr>
<tr>
<td>Oregon Health & Science University</td>
<td>BB/CC</td>
<td>Aimee Pierce</td>
<td>Randall Woltjer, Raina Croff</td>
</tr>
<tr>
<td>Rush University</td>
<td>BB only</td>
<td>Melissa Lamar</td>
<td>David Bennett, Lisa Barnes</td>
</tr>
<tr>
<td>Stanford University</td>
<td>BB/CC</td>
<td>Victor Henderson</td>
<td></td>
</tr>
<tr>
<td>UC-Davis*</td>
<td>BB/CC</td>
<td>Oanh Meyer</td>
<td>Rachel Whitmer, Sarah Farias</td>
</tr>
<tr>
<td>UC-Irvine</td>
<td>BB/CC</td>
<td>David Sultzter</td>
<td></td>
</tr>
<tr>
<td>UC-San Diego</td>
<td>BB/CC</td>
<td>Robert Rissman</td>
<td>James Brewer</td>
</tr>
<tr>
<td>UC-San Francisco</td>
<td>BB/CC</td>
<td>Bruce Miller</td>
<td>Serggio Lanata</td>
</tr>
<tr>
<td>University of Kansas</td>
<td>BB/CC</td>
<td>Jonathan Mahnken</td>
<td>Jill Morris, Rebecca Lepping</td>
</tr>
<tr>
<td>University of Kentucky</td>
<td>BB only</td>
<td>Erin Abner</td>
<td>Anna Kucharska-Newton</td>
</tr>
<tr>
<td>University of Michigan</td>
<td>BB/CC</td>
<td>Henry Paulson</td>
<td>Kelly Bakulski</td>
</tr>
<tr>
<td>University of Pittsburgh</td>
<td>BB/CC</td>
<td>Jennifer Lingler</td>
<td>Julia Kofler, Anthony Fabio</td>
</tr>
<tr>
<td>Wake Forest University</td>
<td>BB/CC</td>
<td>James Bateman</td>
<td>Suzanne Craft, Samuel Lockhart</td>
</tr>
<tr>
<td>Washington University</td>
<td>BB only</td>
<td>Cyrus Raji</td>
<td>Richard Perrin</td>
</tr>
<tr>
<td>Yale University</td>
<td>BB/CC</td>
<td>Christopher Van Dyck</td>
<td></td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

Barbara B. Bendlin, PhD
Robert Rissman, PhD
Andrea Gilmore-Bykovskyi, PhD, RN
William Buckingham, PhD
Ryan Powell, PhD, MA
Jack Hunt, PhD
Mengang Yu, PhD
M. Shahriar Salamat, MD, PhD
Sanjay Asthana, MD
Sterling Johnson, PhD

Robert Golden, MD
Jon Audhya, PhD
Rick Moss, PhD

NIA Leadership, Program Officers and Staff

And many, many others . . .

Funding
NIA R01 AG070883 (Kind PI; Bendlin MPI)
NIA supplement 3 R01 AG070883-02 (Pis: Kind/Bendlin)
NIA RF1AG057784 (Kind PI; Bendlin MPI)
NIMHD R01MD010243-01 (Kind PI)
NIA F31AG062116 (PI: Hunt)
NIA P30AG062715 (Asthana PI)
NIA 1P30-AG062429-01 (Brewer PI)
NIA R01 AG077628 (Grill PI; Gillen/Kind MPI)

The NACC database is funded by NIA/NIH Grant U24 AG072122. Data are contributed by the NIA-funded ADRCs: P30 AG062429 (PI James Brewer, MD, PhD), P30 AG066468 (PI Oscar Lopez, MD), P30 AG062421 (PI Bradley Hyman, MD, PhD), P30 AG066509 (PI Thomas Grabowski, MD), P30 AG066514 (PI Mary Sano, PhD), P30 AG066530 (PI Helena Chui, MD), P30 AG066501 (PI Marilyn Albert, PhD), P30 AG066444 (PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), P30 AG066512 (PI Thomas Wisniewski, MD), P30 AG066462 (PI Scott Small, MD), P30 AG072979 (PI David Wolk, MD), P30 AG072972 (PI Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PayD), P30 AG072975 (PI David Bennett, MD), P30 AG072978 (PI Neil Kowall, MD), P30 AG072977 (PI Robert Vassar, PhD), P30 AG066519 (PI Frank LaFerla, PhD), P30 AG062677 (PI Ronald Petersen, MD, PhD), P30 AG079280 (PI Eric Reiman, MD), P30 AG062422 (PI Gil Rabinovici, MD), P30 AG066511 (PI Allan Levey, MD, PhD), P30 AG072946 (PI Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, FRCP), P30 AG072973 (PI Russell Swerdlow, MD), P30 AG066506 (PI Todd Golde, MD, PhD), P30 AG066508 (PI Stephen Strittmatter, MD, PhD), P30 AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 (PI Suzanne Craft, PhD), P30 AG072931 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, MD, PhD), P20 AG068053 (PI Justin Miller, PhD), P20 AG068077 (PI Gary Rosenberg, MD), P20 AG068082 (PI Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD), P30 AG072959 (PI James Leverenz, MD).