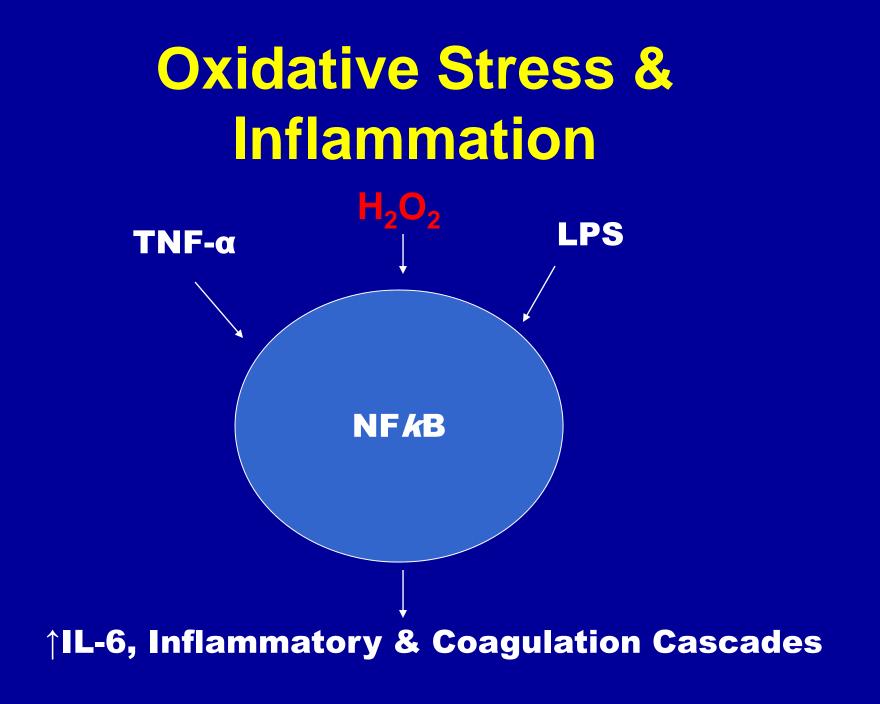
Carotenoids, Selenium, and IL-6: Identifying Intervention Targets Using Epidemiological Data


> Jeremy Walston, MD Professor of Medicine Johns Hopkins University Division of Geriatric Medicine and Gerontology

Introduction

- Biology that connects inflammation antioxidants, and late life decline
- Epidemiological evidence: The Good News and The Bad News
- Potential directions for intervention development

Hypothetical Pathway to Adverse Outcomes

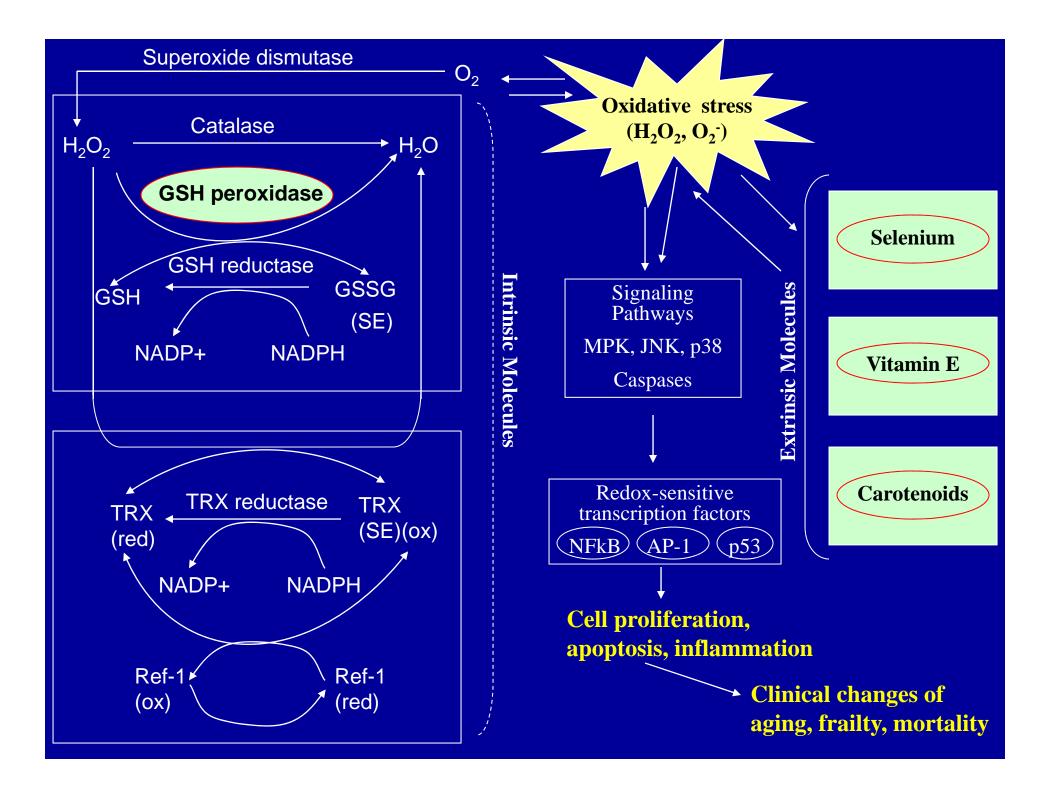
What Are Carotenoids?

- Yellow to red-pigmented plant-derived molecule
- Contains long conjoined units of hydrocarbon isoprene
- Isoprene units function to absorb and transfer electrons
- New or altered by-products of original molecule remain after interaction with oxidative products

Function of Carotenoids

- In plants, absorb energy from light and pass to chlorophyll
- Also protects chlorophyll from free radicals
- After ingestion by animals, stored in fat
- Absorbs free radicals in animal species as well
- Important precursor to vitamin A

Carotenoid Family


- α Carotene, yellow orange, dates, mangos
- β Carotene yellow, green leafy vegetables
- Lycopene, red tomatoes
- Lutein/Zeaxanthin, yellow corn
- β cryptoxanthin, green/yellow broccoli
- Total carotenoids

Selenium

- Mineral taken into plants from soil
- Absorbed from plant or meat food sources
- Regional variation depending on soil levels
- Function in free radical quenching
- Incorporated into family of selenoproteins

Selenoproteins

- Glutathione peroxidases
- Thioredoxin reductase
- Selenoprotein P
- Iodothyronine diodinase

Hypothetical Pathway to Adverse Outcomes

Disability and Carotenoid Levels

- IN CHIANTI population (N=928, age 65-102)
- Higher levels of total carotenoids significantly associated with better mobility measures after 6 years
 - Severe Walking Disability; OR 0.59, 95% CI 0.38-0.90 over 6 years
 - Significant lower decline in 4 meter walking speed
 - Lower incidence of not being able to complete 400 meter walk

Frailty and Carotenoid Levels

- Women's Health and Aging Studies I and II (N=1436, age 65-101)
- Lower levels of beta-carotene is independent risk factor for the development of frailty
- Lower levels of total carotenoids predict the development of severe walking disability

Semba RD et al, Gerontology, 2006, and Age and Aging, 2007

Antioxidant levels, IL-6 and Mortality in Older Adults

In general, low levels predict higher levels of IL-6 over two years

Higher levels associated with fewer adverse outcomes, including mortality

Walston J et al, 2006 Am J Epi.

Population

<u>Women's Health and Aging I</u> (WHAS-1)

- Disability
 - ≥ 2 domains with difficulty
 - 1/3 most disabled community residents
- Age ≥ 65
- MMSE Score \geq 18
- N=619 with complete blood draws

Odds Ratio of Being in the Highest IL-6 Tertile by Micronutrient

Micronutrient	OR	95%CI	P-value
α Carotene (μmol/L)	0.65	0.53,0.80	0.0001
β carotene (μmol/L)	0.72	0.59,0.87	0.001
Lycopene (µmol/L)	0.75	0.63,0.91	0.003
Lutein/Zeaxanthin (µmol/L)	0.72	0.59,0.89	0.004
β cryptoxanthin (μmol/L)	0.77	0.63,0.94	0.016
Total carotenoids (μmol/L)	0.65	0.53,0.79	<0.0001

*N=619 for all analyses except alpha-tocopherol/cholesterol ratio (n=605), zinc (n=615), and selenium (n=591)

Odds Ratio of Being in the Highest IL-6 Tertile by Micronutrient

Micronutrient	OR	95%CI	P-value
Retinol (µmol/L)	0.87	0.72,1.05	0.038
α tocopherol (µmol/L)	0.91	0.74,1.11	0.05
α tocopherol	1.01	0.82,1.24	0.777
/cholesterol ratio (mg/g)			
Zinc (µg/L	0.99	0.82,1.20	0.948
Selenium (µg/L)	0.65	0.52,0.80	<0.0001

*N=619 for all analyses except alpha-tocopherol/cholesterol ratio (n=605), zinc (n=615), and selenium (n=591)

Odds Ratio of Having IL-6 Increase by 3.21 pg/ml in One Year

Alpha-carotene

Baseline alpha carotene	Ν	Year 1			
(μmol/L)		OR	CI		
<=0.039	146	2.48*	1.05, 5.88		
>0.039, <=0.094	126	1.49	0.60, 3.72		
>0.94	155	1			

Odds Ratio of having IL-6 increase by >3.21 pg/ml over 2 Years

Alpha-carotene

Baseline alpha carotene	Ν	Year 1		Ν	Year 2	
(μmol/L)		OR	CI		OR#	CI
<=0.039	146	2.48*	1.05, 5.88	112	7.99**	2.27, 28.21
>0.039, <=0.094	126	1.49	0.60, 3.72	111	7.12**	2.08, 24.38
>0.94	155	1		119	1	l, Am J Epi 2006

Odds Ratio of having IL-6 increase by 3.21 pg/ml in one year

Beta-carotene

Beta- carotene	N		Year 1		
(μmol/L)		OR	CI		
<=0.23	138	1.68	0.74, 3.84		
>0.23, <=0.45	141	0.96	0.42, 2.21		
>0.45	148	1			

Odds Ratio of Having IL-6 Increase by >3.21 pg/ml over 2 Years

Beta-carotene

Beta- carotene	N	Year 1		N	Year 2		
(μmol/L)		OR	CI		OR	CI	
<=0.23	138	1.68	0.74, 3.84	115	4.09*	1.38, 12.11	
>0.23, <=0.45	141	0.96	0.42, 2.21	108	3.52*	1.19, 10.39	
>0.45	148	1	1		1		

Odds Ratio of Having IL-6 Increase by 3.21 pg/ml in One Year

Lutein/Zeaxanthin

Lutein Zeaxanthin (µmol/L)	Ν	Year 1			
		OR	CI		
<=0.27	132	1.12	0.46, 2.74		
>0.27, <=0.41	144	1.34	0.61, 2.94		
>0.41	151	1			

Odds Ratio of Having IL-6 Increase by > 3.21 pg/ml over 2 Years

Lutein/Zeaxanthin

Lutein Zeaxanthin (µmol/L)	Ν	Year 1		Ν	Year 2	
		OR	CI		OR	CI
<=0.27	132	1.12	0.46, 2.74	105	5.57**	1.74, 17.80
>0.27, <=0.41	144	1.34	0.61, 2.94	114	3.18*	1.08, 9.39
>0.41	151	1		123	1	

Odds Ratio of Having IL-6 Increase by 3.21 pg/ml in One Year

Total Carotenoids

Total carotenoid	Ν	Year 1			
S (μmol/L)		OR	CI		
<=1.17	132	2.05	0.86, 4.91		
>1.17, <=1.80	142	1.94	0.83, 4.52		
>1.80	153	1			

Odds Ratio of Having IL-6 Increase by 3.21pg/ml over 2 Years

Total Carotenoids

Total carotenoids	Ν	Year 1		N	Year 2	
(μmol/L)		OR	CI		OR	CI
<=1.17	132	2.05	0.86, 4.91	113	3.98**	1.51, 10.49
>1.17, <=1.80	142	1.94	0.83, 4.52	103	1.40	0.47, 4.14
>1.80	153	1		126	1	

Odds Ratio of Having IL-6 Increase by 3.21pg/ml over 2 Years

Selenium

Selenium (μmol/L)	Ν	Year 1		Ν	Year 2	
		OR	CI		OR	CI
<=110.0	131	0.53	0.23, 1.27	99	0.94	0.36, 2.45
>110.00, <=122.90	138	0.76	0.34, 1.68	115	0.81	0.32, 2.03
>122.90	140	1		122	1	

Antioxidants & Mortality

<u>Micronutrients</u>	<u># of</u> Deaths	<u>Unadjusted</u>			e, Race, djusted	<u>Full</u>	/ Adjusted
	<u>in 5 yrs</u>	<u>HR</u>	<u>95% C.I.</u>	<u>HR</u>	<u>95% C.I</u>	<u>HR</u>	<u>95% C.I</u>
Alpha Carotene:							
<=0.040 µmol/L	71	1.19	0.85,1.68	1.44	1.02,2.04	1.06	0.70,1.59
>0.040, <=0.094 µmol/L	73	1.21	0.86,1.69	1.30	0.92,1.82	1.19	0.81,1.74
>0.094 µmol/L	62	1		1		1	
Total Carotenoids:							
<=1.167	75	1.23	0.88,1.72	1.32	0.95,1.85	1.07	0.72,1.58
>1.167, <=1.806	67	1.03	0.73,1.45	1.09	0.78,1.54	1.02	0.69,1.50
>1.806 µmol/L	64	1		1		1	
Selenium:							
<=109.9 μg/L	78	1.66	1.17,2.37	1.48	1.03,2.13	1.54	1.03,2.32
>109.9, <=122.8 µg/L	68	1.40	0.98,2.02	1.24	0.86,1.79	1.30	0.86,1.96
>122.8 μg/L	51	1		1		1	
	Walston J. et al., Am J Epi, 2006					2006	

Mortality and Antioxidants

- 47 Low-biased randomized clinical trials (n=180,938)
- Supplementation significantly associated with all cause mortality

-B-carotene (RR, 1.05: 95% CI, 1.02-1.08)

- -Vitamin A (RR 1.16; 95% CI, 1.10-1.24)
- -Vitamin E (RR, 1.04; 95% CI, 1.01-1.07)

Mortality and Antioxidants

- Vitamin C and Selenium supplementation not associated with mortality
- Many of individual or combination intervention with selenium close to significant reduction of mortality
- Authors suggest further study of selenium and Vitamin C warranted

Bjelakovic G et al. JAMA, 2007

Mortality and Carotenoid Supplementation

- Increased mortality first identified smokers in lung cancer study
- Subsequent analyses reveal significant increased risk of all cause mortality with antioxidant supplements
- May be related to conversion of extra molecules to free radicals

Mortality and Carotenoid Supplementation

- Vitamins and Lifestyle cohort (VITAL Study)
- Observational study of 77,126 individuals who reported on 10 years of supplement use

 Lung Cancer Registry used to identify 521 subjects who developed lung cancer through December 2005

Satia JA, et al., Am J Epi, 2009_

Mortality and Carotenoid Supplementation

- Longer duration of use associated with increased risk of lung cancer
 - -Lutein: HR 2.02, (95% CI, 1.28-3.17) for total lung CA risk
 - –Beta-carotene: HR 3.22, 95% CI 1.29-8.07) for small cell lung CA with 4 years vs. no use.

Summary of Data

- Low levels of carotenoids predict IL-6 increase in older populations
- Low levels of carotenoids are associated with adverse outcomes in older adults

 Carotenoid supplementation is associated with adverse outcomes in many studies

Summary of Data Low levels of selenium predicts mortality in populations of older adults (close in general populations)

 Selenium supplementation not associated with increased mortality

Missing Evidence

- No studies in older adults that target those with deficits
- Inflammation itself may drive levels of antioxidants lower
- No clear evidence if this is related to diet or to innate biology that uses up antioxidants at increased rate

Missing Evidence

- Vast areas of biochemistry left to explore
- Poor understanding of selenoproteins and of toxic byproducts of carotenoids
- Does inflammation chew up molecules, or alter selenoprotein make-up?

Potential Study Design

- Identify at risk older adults with low antioxidants and high IL-6
- Randomize to placebo and intervention and follow inflammatory markers, health status, and evolution of frailty and functional decline