Neural Control of Lower Urinary Tract Function

William C. de Groat University of Pittsburgh Medical School

Disclosures

- Current funding: NIH Grants, DK093424, DK-091253, DK-094905, DK-090006.
- Other financial relationships: Research Contract from Astellas; Consultant for Bayer Pharma AG, NeuSpera Medical, Amphora Medical.
- Conflicts of interest: None

Topics

- Lower urinary tract: functions, anatomy and innervation.
- Properties of bladder afferent nerves
- Central neural control of voiding
- Mechanisms underlying urine storage and voiding dysfunction

Functions of the Lower Urinary Tract

- Urine storage in a reservoir (bladder)
- Urine release through an outlet (urethra)
- Both functions controlled by circuitry in the central nervous system.
- Neural circuitry acts like a switch to turn micturition off and on.
- Micturition requires the coordination of smooth and striated muscle.

Lower Urinary Tract Innervation

TYPES OF VOIDING

Parkinson's, MS, stroke, brain tumors, spinal cord injury, aging, cystitis

Micturition Switching Circuit

Micturition Switching Circuit

Two Types of Bladder Afferents

- *A-fiber type:* small myelinated axons that respond to bladder distension and trigger sensation of bladder fullness and desire to void.
- *C-fiber type:* unmyelinated axons that do not respond to bladder distension but do respond to noxious stimuli. These afferents trigger painful sensations and may be responsible for urgency and urge incontinence.

Fowler, Griffiths & de Groat, Nature Rev Neurosci., 9: 453, 2008

Pathology: Bladder Distension

Central Pathways Activated by C-Fiber Afferents

Neuronal subtypes in the pontine micturition center of the cat

Similar subtypes are present in the PAG

Contractions recorded in a distended bladder under isovolumetric conditions

Distribution of Different Types of Bladder Neurons in the Rostral Pons

Type of Neuron	Count	Percent
Direct Neurons	35	20.7
Inverse Neurons	86	50.9
On-Off Neurons	6	3.6
Independent Neurons	42	24.9^*
Total	169	100.0

de Groat, W., et. al., Behav Brain Res, 1998;

Sasaki, M. J Physiol, 2004; Br Res 2005, J Comp Neurol, 2005

de Groat & Wickens, 2013

de Groat & Wickens, 2013

Voiding

Voiding

L3-L4 spinal cord is also involved in bladder and sphincter function

L3-L4 spinal cord contains a lumbar spinal coordinating center (LSCC)

Chang, H. et al., AJP Renal 2007

L3-L4 spinal cord contains a lumbar spinal coordinating center (LSCC)

Pseudorabies Virus (PRV) Transneuronal Tracing

Transverse slice of the spinal cord (P20-P24)

Dorsal Column

Bridge

 $\mathbf{\Lambda}$

Wing

Central Canal

Patch Clamp Recording And Intracellular Labelling with Biocytin

Neurons infected with AAV-GFP in L3-L4 project their axons down into L6-S1. Dense axonal ramification within Onuf's nucleus suggests synaptic contacts with motoneurons.

PRV614-RFP in EUS reveals EUS-related propriospinal neurons in L3-L4

Conclusions

- The etiology of OAB is uncertain but may be neurogenic, myogenic, or both
- Neurogenic theory
 - -Reduced pontine or suprapontine inhibition
 - —Damaged axonal paths in the spinal cord and/or brain
 - -Increased primary afferent input
 - -Loss of peripheral or spinal inhibition
 - -Enhanced excitatory neurotransmission in the micturition reflex pathway
- Myogenic theory

Spinal And Supraspinal EUS Reflex Mechanisms

Spinal Bursting Mechanism in the L3-L4 Spinal Cord

Chang, H., et al., AJP Renal 2007

de Groat & Wickens, 2013