The intersection between comorbidity, multimorbidity and frailty

Caroline S. Blaum, MD, MS
New York University

U13 Gemsstar Conference March, 2015
Definitions

- Comorbidity: additional diseases beyond the index disease
- Multimorbidity: co-occurrence of multiple diseases
- Frailty: increased vulnerability to stressors and adverse outcomes
Goals of this Presentation

• Overview: Multiple Chronic Conditions
 • Disease specific
 • Geriatric conditions
• Multiple chronic conditions and frailty
• Links to theory in aging research
• Research gaps
Frailty: A Conceptual Model

- **Primary Cause**
 - Genetic
- **Secondary Causes**
 - Diabetes
 - Heart Failure
 - Lung Disease
 - Inflammatory Diseases

Physiology
- Metabolism
- Endocrine
- Inflammation
- Oxidative stress

Signs and Symptoms
- Loss of muscle mass
- Altered energy metabolism
- Decreased endurance
- Cognitive impairment

Frailty: Clinical syndrome
- Disability
- Death

- **NYU Langone Medical Center**
“The most common chronic condition experienced by adults is multimorbidity, the coexistence of multiple chronic diseases or conditions.”

Tinetti et al. JAMA 2012.
It’s Not Easy Living with Multimorbidity

<table>
<thead>
<tr>
<th>Time</th>
<th>Medications</th>
<th>Non-pharmacologic Therapy</th>
<th>All Day</th>
<th>Periodic</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 AM</td>
<td>Ipratropium MDI Alendronate 70mg weekly</td>
<td>Check feet</td>
<td>Joint protection</td>
<td>Pneumonia vaccine, Yearly influenza vaccine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sit upright 30 min.</td>
<td>Energy conservation</td>
<td>All provider visits: Evaluate Self-monitoring blood glucose, foot exam and BP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check blood sugar</td>
<td>Exercise (non-weight bearing if severe foot disease, weight bearing for osteoporosis)</td>
<td>Quarterly HbA1c, biannual LFTs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Muscle strengthening exercises, Aerobic Exercise ROM exercises</td>
<td>Yearly creatinine, electrolytes, microalbuminuraria, cholesterol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Avoid environmental exposures that might exacerbate COPD</td>
<td>Referrals: Pulmonary rehabilitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wear appropriate footwear</td>
<td>Physical Therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Albuterol MDI prn</td>
<td>DEXA scan every 2 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Limit Alcohol</td>
<td>Yearly eye exam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maintain normal body weight</td>
<td>Medical eye exam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medical nutrition therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Patient Education: High-risk foot conditions, foot care, foot wear</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Osteoarthritis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COPD medication and delivery system training</td>
</tr>
<tr>
<td>8 AM</td>
<td>Eat Breakfast HCTZ 12.5 mg Lisinopril 40mg Glyburide 10 mg ECASA 81 mg Metformin 850mg Naproxen 250mg Omeprazole 20mg Calcium + Vit D 500mg</td>
<td>2.4gm Na, 90mm K, Adequate Mg, ↓ cholesterol & saturated fat, medical nutrition therapy for diabetes, DASH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 PM</td>
<td>Eat Lunch Ipratropium MDI Calcium+ Vit D 500 mg</td>
<td>Diet as above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 PM</td>
<td>Eat Dinner</td>
<td>Diet as above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 PM</td>
<td>Ipratropium MDI Metformin 850mg Naproxen 250mg Calcium 500mg Lovastatin 40mg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 PM</td>
<td>Ipratropium MDI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boyd et al. JAMA 2005;294:716-724
Figure 4.1 Co-morbidity among Chronic Conditions for Medicare FFS Beneficiaries: 2010

NYU Langone Medical Center

Slide Courtesy of R. Goodman, CDC
Geriatric conditions are associated with ADL dependency

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td># geriatric conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.0 (2.6-3.4)</td>
<td>2.6 (2.3-3.0)</td>
<td>2.2 (2.0-2.5)</td>
</tr>
<tr>
<td>2</td>
<td>7.3 (6.3-8.3)</td>
<td>5.4 (4.7-6.2)</td>
<td>3.9 (3.6-4.4)</td>
</tr>
<tr>
<td>≥3</td>
<td>16.9 (14.8-18.9)</td>
<td>11.5 (9.9-13.0)</td>
<td>7.5 (6.4-8.5)</td>
</tr>
<tr>
<td># chronic diseases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1.9 (1.8-2.1)</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2.8 (2.6-3.1)</td>
</tr>
<tr>
<td>≥3</td>
<td>-</td>
<td>-</td>
<td>4.0 (3.5-4.5)</td>
</tr>
</tbody>
</table>

Cohorts:

- **Assets and Health Dynamics Among the Oldest Old (AHEAD)**
 - Birth Years: 1890-1924
 - Baseline: 1993

- **Children of the Depression (CODA)**
 - Birth Years: 1924-1930
 - Baseline: 1998

- **Original Health and Retirement Study (HRS)**
 - Birth Years: 1931-1941
 - Baseline: 1992

- **War Babies (WB)**
 - Birth Years: 1942-1947
 - Baseline: 1998

- **Early Boomers (EB)**
 - Birth Years: 1948-1953
 - Baseline: 2004

- **Middle Boomers (MB)**
 - Birth Years: 1953-1959
 - Baseline: 2012
Common Comorbidities Among Older Adults: Diseases and Geriatric Conditions

HRS, representative of 35 million people 65 and older, 2004 (Lee et al, JAGS 2009:57;840)

<table>
<thead>
<tr>
<th>Index Condition (%)</th>
<th>Weighted Prevalence (%) of Other Conditions Among Respondents Having Index Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAD</td>
</tr>
<tr>
<td>CAD (8.7)</td>
<td></td>
</tr>
<tr>
<td>CHF (4.8)</td>
<td>58%</td>
</tr>
<tr>
<td>Diabetes (19.4)</td>
<td>24%</td>
</tr>
<tr>
<td>UI (25.0)</td>
<td>19%</td>
</tr>
<tr>
<td>Falls (23.2)</td>
<td>23%</td>
</tr>
</tbody>
</table>
Incidence of Geriatric Conditions Among Adults With Diabetes Aged 51 and Older: HRS 2004 to 2006

(Cigolle, et al, JGIM, 2010)
Framework for Considering Comorbid Conditions

Clinically dominant comorbid conditions:
so complex or serious that they eclipse the management of other health problems
– end-stage, severely symptomatic, recently diagnosed
 e.g. heart failure

Concordant conditions:
represent parts of the same overall pathophysiologic risk profile
and are more likely to be the focus of the same disease management plan (may include ‘complicating’)
- e.g. coronary atherosclerosis and hyperlipidemia

Discordant conditions:
not directly related in either their pathogenesis or management
and do not share an underlying predisposing factor
- arthritis or urinary incontinence

Piette JD and Kerr EA Diabetes Care 29:725-731, 2006
Diabetes and Vascular Complications

Modifiers: Blood pressure, lipids, physical activity, treatment

Complications:
- Atherosclerotic
- Microvascular
Diabetes and Distal Complications

Modifiers: Blood pressure, lipids, physical activity, treatment

Outcomes:
- Geriatric conditions
- Disability
- Mortality

Complications:
- Atherosclerotic
- Microvascular

IR, obesity

Impairments:
- Cognitive
- Affective
- Neurologic
- Muscle/fat
Most frequently co-occurring chronic conditions, women 65+ in community (WHAS screenees)

- Arthritis, visual impairment 44%
- Visual Impairment, HBP 40%
- Arthritis, HBP 34%
- Heart disease, visual imp. 17%
- Visual imp, hearing imp 15%
- Heart disease, arthritis 14%
- Heart disease, HBP 13%
- Arthritis, hearing imp 12%
- Diabetes, visual imp 12%
Heart Failure and Cognition

(Gure, TR et al, JAGS 60, 2012)

<table>
<thead>
<tr>
<th></th>
<th>No heart failure</th>
<th>Heart disease but low probability heart failure</th>
<th>High probability heart failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIC’s score: mean ± sd, (range 0-27)</td>
<td>14.5 ± 4.3</td>
<td>13.7 ±4.6</td>
<td>12.7 ±4.3</td>
</tr>
<tr>
<td>Normal cognition</td>
<td>71 (70-71)</td>
<td>68 (65-70)</td>
<td>61 (57-65)</td>
</tr>
<tr>
<td>MCI % (confidence interval)</td>
<td>21 (19-22)</td>
<td>22 (22-24)</td>
<td>24 (21-28)</td>
</tr>
<tr>
<td>Mod-severe cognitive impairment</td>
<td>8 (7-9)</td>
<td>10 (9-11)</td>
<td>15 (12-18)</td>
</tr>
</tbody>
</table>
Changes in ADL/IADL with time in respondents with and without diabetes in HRS (51 and over)
ADL/IADL with time by diabetes and hypertension (HRS, ages 51 and up)
Competing risks in older adults with diabetes: falls and strokes (Min, L, preliminary data)

Cumulative Incidence of Injurious Fall vs Stroke
N=365 Diabetics Aged 65+ With Competing Risk of Death

Years after 1998 interview

Probability
Grouping Chronic Diseases and Geriatric Conditions: The HRS

(Cigolle, Ha, et. al, 2012, JGIM paper presentation)
RESULTS: Disability and Mortality Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Healthy BP, MS</th>
<th>BP, CV, MS, falls</th>
<th>Ger cond, dementia</th>
<th>Healthy DM, MS, BP</th>
<th>DM, CV</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>New ADL dependency at 2 years (%)</td>
<td>3.0</td>
<td>7.7</td>
<td>42.0</td>
<td>7.8</td>
<td>10.0</td>
<td>26.3</td>
</tr>
<tr>
<td>New IADL dependency at 2 years (%)</td>
<td>5.1</td>
<td>13.9</td>
<td>60.2</td>
<td>11.5</td>
<td>15.3</td>
<td>53.2</td>
</tr>
<tr>
<td>Mortality at 2 years (%)</td>
<td>4.8</td>
<td>13.7</td>
<td>44.4</td>
<td>6.4</td>
<td>13.0</td>
<td>35.5</td>
</tr>
<tr>
<td>Mortality at 4 years (%)</td>
<td>10.3</td>
<td>25.7</td>
<td>73.3</td>
<td>13.8</td>
<td>24.2</td>
<td>59.8</td>
</tr>
</tbody>
</table>
Goal-Oriented Patient Care

<table>
<thead>
<tr>
<th>Measurement Domain</th>
<th>Examples of Diseases</th>
<th>Traditional Outcomes</th>
<th>Goal-Oriented Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival</td>
<td>Cancer, heart failure</td>
<td>Overall, disease-specific, and disease-free survival</td>
<td>None if survival not a high-priority goal; survival until personal milestones are met (e.g., grandchild’s wedding)</td>
</tr>
<tr>
<td>Biomarkers</td>
<td>Diabetes, COPD</td>
<td>Change in indicators of disease activity (e.g., glycated hemoglobin level, CRP level, and pulmonary-function tests)</td>
<td>None (not a meaningful outcome observed or felt by patient)</td>
</tr>
<tr>
<td>Signs and symptoms</td>
<td>Heart failure, COPD, arthritis</td>
<td>Inventory of disease-specific signs and symptoms (e.g., dyspnea, edema, and back pain)</td>
<td>Symptoms that have been identified as important by the patient (e.g., control of dyspnea or pain sufficient to perform an activity such as bowling or walking grandchild to school)</td>
</tr>
<tr>
<td>Functional status, including mobility</td>
<td>Cancer, heart failure, COPD</td>
<td>Usually none or disease-specific (e.g., Karnofsky score, NYHA functional classification, and 6-minute walk test)</td>
<td>Ability to complete or compensate for inability to complete specific tasks identified as important by the patient (e.g., ability to get dressed without help)</td>
</tr>
</tbody>
</table>

* COPD denotes chronic obstructive pulmonary disease, CRP C-reactive protein, and NYHA New York Heart Association.

Tinetti and Reuben NEJM 2012
Multiple Chronic Conditions in Context

Moving from “What is the matter?” to “What Matters to You?”

Key contextual factors: public policy, community, health care systems, family, and person, to sub-personal cellular and molecular levels (where most medical knowledge currently is generated)

New knowledge needed involves moving from a predominant disease focus toward a person-driven, goal-directed research agenda

NIH/PCORI Meeting on Multiple Chronic Conditions in Context, Feb. 2013
Quality Framework for People with MCC’s

(Giovannetti, ER, et al. Am J Man Care 19, 2013)
Conceptual Framework

Comorbid Disease

Comorbidity

Index Disease

Multimorbidity

Condition

Condition

Condition

Patient

Boyd, CM, Fortin M. Public Health Reviews, 2011.
Frailty: A Conceptual Model

Primary Cause
- Genetic

Secondary Causes
- Diabetes
- Heart Failure
- Lung Disease
- Inflammatory Diseases

Physiology
- Metabolism
- Endocrine
- Inflammation
- Oxidative stress

Signs and Symptoms
- Loss of muscle mass
- Altered energy metabolism
- Decreased endurance
- Cognitive impairment

Frailty: Clinical syndrome

Disability

Death
Frailty is distinct from comorbidity and disability

Disability: ≥ 1 ADL
(n=67)

Comorbidity
(n=2131)

Frailty
(n=98)

5.7%
(n=21)

21.5%
(n=79)

26.6%
(n=98)

46.2%
(n=170)

Frailty Models
(Cigolle, C et al, JAGS 57, 2008)

• Frailty has been modeled in different ways, reflecting different theoretical understandings of the concept.
 • Biologic Syndrome model (Fried et al.)1: Frailty phenotype - defined in terms of 5 components.
 • Frailty-defining criteria: weight loss, exhaustion, low energy expenditure, slowness, weakness.
 • Not cognition (excluded in original study)

Frailty Models

• **Burden model**\(^2\): frailty index (FI) - a measure of an older adult’s cumulative burden of symptoms, diseases, conditions, disability, etc.

• **Functional Domains model**\(^3\): deficiencies in four domains of functioning (physical, nutritive, cognitive, and sensory).

\(^2\)Rockwood et al., A global clinical measure of fitness and frailty in elderly people, *Cmaj* 2005.

COMPARING MODELS OF FRAILTY:
THE HEALTH AND RETIREMENT STUDY

<table>
<thead>
<tr>
<th>Model</th>
<th>Sample Size</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologic Syndrome Model</td>
<td>n=220 (of 1,657)</td>
<td>10.9%</td>
</tr>
<tr>
<td>Functional Domains Model</td>
<td>n=353 (of 1,657)</td>
<td>20.3%</td>
</tr>
<tr>
<td>Burden Model</td>
<td>n=245 (of 1,657)</td>
<td>15.4%</td>
</tr>
</tbody>
</table>
Two-Year Functional Decline by Frailty Model

- Functional Domains (n=496)
- Burden (n=566)
- Biologic Syndrome (n=308)
Baseline Association of Diseases and Frailty (CHS)

(Fried, et al. J Gerontology, 2001)
Diseases associated with increased risk of frailty

- Congestive Heart Failure
- ESRD
- Diabetes
- Dementia
- Depression
- Advanced cancers
- COPD
- Chronic inflammatory diseases
- Hip fractures
- Pressure ulcers and chronic wounds
- AIDS, Tuberculosis, other chronic infections
Conditions Related to Frailty

• Sarcopenia: loss of muscle mass
• Weight loss/undernutrition
• Decreased strength, exercise tolerance
• Slowed motor processing, performance
• Slow gait speed, poor mobility
• Decreased balance
• Low physical activity
• Cumulative illness
• Cognitive impairment
• Increased vulnerability to stressors
• Psychosocial stressors
Association of BMI and Frailty
(Blaum, CS, et al, JAGS53, 2005.)

Proportion of Sample

<table>
<thead>
<tr>
<th>BMI kg/m²</th>
<th>Not frail</th>
<th>Pre-frail</th>
<th>Frail</th>
</tr>
</thead>
<tbody>
<tr>
<td><18.5</td>
<td>80</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>1.85-26</td>
<td>60</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>26-30</td>
<td>50</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>>30</td>
<td>40</td>
<td>30</td>
<td>60</td>
</tr>
</tbody>
</table>
Prevalence Of Frailty Based On Cognitive Function
(Cigolle C, GSA paper presentation 2012)

<table>
<thead>
<tr>
<th>Prevalence of Frailty</th>
<th>Cognitive Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal (n=3,328)</td>
</tr>
<tr>
<td>Robust (%)</td>
<td>40.2</td>
</tr>
<tr>
<td>Pre-Frail (%)</td>
<td>47.6</td>
</tr>
<tr>
<td>Frail (%)</td>
<td>12.2</td>
</tr>
</tbody>
</table>
Cognition and Frailty

• Over 50% of older adults with mild cognitive impairment and over 70% of older adults with dementia are classified as frail.

• Over 60% of older adults classified as frail have mild cognitive impairment or dementia.
Results: How Frailty-defining Criteria Sort
AREAS FOR RESEARCH
Research Questions: Clinical

• How can we prevent frailty?
• Does frailty help in prognostication for specialists – oncology, elective surgery?
• How do we manage people with frailty?
• What are the competing risks?
• Should it have a clinical definition?
PREVENTION
PROGNOSTICATION
Diabetes and Distal Complications

Modifiers: Blood pressure, lipids, physical activity, treatment

Outcomes:
- Geriatric conditions
- Disability
- Mortality

Complications:
- Atherosclerotic
- Microvascular

Impairments:
- Cognitive
- Affective
- Neurologic
- Muscle/fat

IR, obesity
Diabetes
Research questions: pathways

• Does frailty result from accumulating comorbidities or is it the underlying pathophysiological disruption that causes comorbidity accumulation, frailty and disability development?

• Is frailty a consequence of comorbidity, or is it causal?
Diabetes, multiple chronic conditions, and health outcomes

Baseline Covariates:
- Sociodemographics:
 - Age
 - Cohort
 - Sex
 - Ethnicity
 - Education
 - Income, assets
 - Insurance
 - Social Support

Risk Factors:
- Smoking
- Physical activity
- Obesity
- HbA1c
- TC/HDL
- Diseases
- Geriatric conditions
- Impairments

Time Varying Covariates:
- CVD Risk Factors
- CVD
- Comorbidities
- Geriatric conditions
- Changes in weight activity level and smoking
- Changes in insurance, social support

Diabetes management

The curved black lines represent possible trajectories of disability. The Y axis is worsening outcome. The trajectories are influenced by baseline and time varying covariates.
ADL/IADL with time by diabetes and hypertension (HRS, ages 51 and up)
Competing risks in older adults with diabetes: falls and strokes (Min,L, preliminary data)
Research Questions: Aging

• People with multimorbidity at higher risk of getting 2 or more new diseases than those with no disease (van den Akker 1998)

• The Longevity Dividend; slow aging and slow the development of many chronic diseases. (Goldman, D et al. Health Affairs 32, 2013)
Research Collaborators and Support

University of Michigan
- Chris Cigolle
- Tanya Gure
- Lillian Min
- Pearl Lee
- Jinkyung Ha
- Jeffrey Halter
- Jersey Liang
- Ken Langa
- Mary Beth Ofstedal
- John Piette
- Michele Heisler
- Eve Kerr
- Mary Rogers
- Kathy Ward
- David Weir

Johns Hopkins
- Cynthia Boyd
- Erin Giovinetti
- Jennifer Wolfe
- Jeremy Walston
- Xian Li Xue
- Richard Semba

NQF
- Karen Adams
- Aisha Pittman

NYULMC
- Ben Han
- Judy Zhong
- Rosie Ferris
- John Dodson
- Corita Grudzen
Research Support

- National Institute on Aging (K08, ROI)
- UM Claude D. Pepper Older American’s Independence Center (NIA) (PESC)
- MICHR (Translational research pilot)
- VA Rehabilitation Research and Development Merit Awards
- Ann Arbor VA GRECC
- AHRQ Complex Patient Grant Program R21 and R24 (ARRA)
- John A. Hartford Foundation
- Diane and Arthur Belfer Research Endowment
- PCORI
Cumulative Incidence Of Mild Impairment And Dementia at Two-years and Four-years

* p < .05, † p < .01
Cumulative Incidence Of Pre-frailty And Frailty At Two-years

* p < .05