Frailty, ESRD, and Kidney Transplantation

Dorry Segev, MD, PhD
Vice Chair for Research
Department of Surgery
Johns Hopkins School of Medicine

Funding Road

- AGS Jahnigen Award (07-09)
- NKF of Maryland Mini-grant (07-09)
- Doris Duke Clinical Scientist Development Award (08-12)
- K23AG032885 Paul Beeson Career
 Development Award (09-12)
- R21DK085409 (10-13)
- R01AG042504 (13-18, if NIH still exists then)

Secondary Data

- USRDS
 - all patients with ESRD
- SRTR
 - transplant waiting list
 - transplant recipients and outcomes

- N=hundreds of thousands or millions
- 8 minutes to download

Primary Data

- Prevalent HD (dialysis center): 146
- Prevalent HD (transplant waitlist): 2194
- KT recipients: 845
- N~3000
- 8 years to collect

Why Frailty and Transplantation?

- Older adults comprising higher proportion of:
 - Those considering transplantation
 - Those undergoing transplantation
- Even the younger adults look like older adults
 - End-stage kidney disease
 - Multimorbidity
- Risk prediction is challenging in everyone

Clinical Decision-Making

• Risks:

- Up-front risk of surgery (DM, PVD, CAD, frailty, etc)
- Immunosuppression (infections, side effects)
- Work (drug levels, labs, clinic, hospitalizations)

Benefits:

- Longer survival (less so for older adults)
- Quality of life / energy / etc

McAdams-DeMarco/Segev, JAGS, 2014

Kucirka/Segev, JAMA 2011

Kucirka/Segev, JASN 2009

- Look at KT recipients over 65 (1999-2006)
- Predict how long they survive after KT
- Quintiles (excellent candidates = top quintile)
- Go back to the ESRD patients, apply model to them (dropping those with absolute contraindications)
- See who from each prediction bin gets listed

KT Outcomes in Older Adults

Age (per year, centered at 70)	0.96 (0.94-0.97)	<.001
Dialysis time before	0.78 (0.73–0.84)	<.001
3 years (spline)*		
Dialysis time after	0.93 (0.88-0.99)	.03
3 years (spline)*		
Female	1.12 (0.98–1.27)	.09
Congestive heart failure	0.74 (0.65–0.85)	<.001
Cardiac arrhythmia	0.64 (0.55–0.75)	<.001
Complicated diabetes mellitus	0.71 (0.62–0.80)	<.001
Chronic pulmonary disease	0.71 (0.59–0.85)	<.001
Coronary artery disease	0.84 (0.72–0.98)	.03
Hypertension	1.24 (1.03–1.51)	.02
Drug dependence	0.16 (0.03–0.78)	.02
Peripheral vascular disease	0.74 (0.63–0.86)	<.001
Polycystic kidney disease	1.59 (1.20–2.11)	.001
Deficiency anemia	0.85 (0.71–1.02)	.08
Other neurological disorder	0.52 (0.32–0.83)	.007
Liver disease	0.61 (0.46–0.80)	<.001
Depression	0.66 (0.46–0.95)	.02
Peptic ulcer disease	0.66 (0.41–1.06)	.08
Current smoking	0.69 (0.47–1.02)	.06

Grams/Segev, JAGS 2011

	Excellent candidates (3yr>87.6%)	Good candidates (3yr>78.3%)	Remaining candidates (3yr<78.3%)
N	11,756	43,291	72,913
(%)	(9.1%)	(33.6%)	(56.6%)

	Excellent candidates (3yr>87.6%)	Good candidates (3yr>78.3%)	Remaining candidates (3yr<78.3%)
N	11,756	43,291	72,913
(%)	(9.1%)	(33.6%)	(56.6%)
% with access	23.7	8.7	2.5
% transplanted	13.2	4.2	1.1

	Excellent candidates	Good candidates	Remaining candidates
	(3yr>87.6%)	(3yr>78.3%)	(3yr<78.3%)
N	11,756	43,291	72,913
(%)	(0.1%)	(33.6%)	(56.6%)
% with access	23.7	8.7	2.5
% transplanted	13.2	4.2	1.1

11% would find live donors!

- 594 adults≥65yo undergoing general surgery
- Frailty Prevalence:
 - 10.4% frail
 - 31.3% intermediately frail
 - 58.3% nonfrail

594 adults≥65yo undergoing general surgery

• Frailty Prevalence: Complications:

Adjusted Rate (full model):

```
    Intermediately Frail
    2.06 (1.18-3.60)
```

- Frail 2.54 (1.12-5.77)

Makary, Segev, JACS, 2010

594 adults≥65yo undergoing general surgery

Frailty Prevalence: Length of Stay:

- 10.4% frail 1.5d 7.7d

- 31.3% intermediately frail 1.2d 6.2d

- 58.3% nonfrail 0.7d 4.2d

Adjusted Rate (full model):

Intermediately Frail
 1.49 (1.24-1.80)

- Frail 1.69 (1.28-2.23)

Makary, Segev, JACS, 2010

- 594 adults≥65yo undergoing general surgery
- Frailty Prevalence: Discharge to Non-Home:

```
- 10.4% frail 17.4% 42.1%
```

- 58.3% nonfrail 0.8% 2.9%
- Adjusted Rate (full model):

```
    Intermediately Frail
    3.16 (1.00-9.99)
```

- Frail 20.48 (5.54-75.68)

Makary, Segev, JACS, 2010

Makary, Segev, JACS, 2010

Segev, 2006: "Surviving MAFAT by doodling"

Frailty Prevalence: By Cohort, All Ages

	DIALYSIS	WAITLIST	TRANSPLANT	CHS
Non-Frail	9.6%	19.7%	20.1%	46.0%
Intermediately Frail	44.2%	53.5%	58.4%	46.0%
Frail	46.2%	26.8%	21.5%	6.9%

Frailty Prevalence: By Cohort, By Age

Frailty Components, Normalized

- 146 prevalent dialysis patients; 43.8% age≥65
- Frailty Prevalence:
 - 41.8% frail
 - 32.2% intermediately frail
 - 26.0% nonfrail (expanded definition)

McAdams-DeMarco/Segev, JAGS, In Press

• 146 prevalent dialysis patients; 43.8% age≥65

Frailty Prevalence: 3-Year Mortality:

- 41.8% frail 40.2%

- 32.2% intermediately frail 34.4%

- 26.0% nonfrail 16.2%

• 146 prevalent dialysis patients; 43.8% age≥65

• Frailty Prevalence: 3-Year Mortality:

- 41.8% frail 40.2%

- 32.2% intermediately frail 34.4%

- 26.0% nonfrail 16.2%

Adjusted Rate (full model):

Intermediately Frail
 2.68 (1.02-7.07)

- Frail 2.60 (1.04-6.49)

McAdams-DeMarco/Segev, JAGS, 2013

• 146 prevalent dialysis patients; 43.8% age≥65

• Frailty Prevalence: Hospitalization:

- 41.8% frail 60.7%

- 32.2% intermediately frail 44.7%

- 26.0% nonfrail 46.2%

Adjusted Rate (full model):

Intermediately Frail
 0.76 (0.49-1.16)

- Frail 1.43 (1.01-2.03)

McAdams-DeMarco/Segev, JAGS, 2013

Frailty: Prevalent ESRD Patients

- 146 prevalent dialysis patients; 43.8% age≥65
- Frailty Prevalence: # Falls in 6 months:
 - 41.8% frail
 - 32.2% intermediately frail
 - 26.0% nonfrail
- Adjusted Rate (full model):

```
    Intermediately Frail
    1.19 (0.44-3.24)
```

- Frail 3.09 (1.38-6.90)

McAdams-DeMarco/Segev, BMC Nephrology, 2013

- 183 KT recipients; 22.1% age≥65
- Frailty Prevalence:
 - 25.1% frail
 - 74.9% not frail

• 183 KT recipients; 22.1% age≥65

Frailty Prevalence:	DGF:
– 25.1% frail	30%
74.9% not frail	15%

• 183 KT recipients; 22.1% age≥65

• Frailty Prevalence: DGF:

- 25.1% frail 30%

- 74.9% not frail 15%

Adjusted Rate (full model):

- Frail 1.94 (1.13-3.36)

Table 4.	Relative	Risk of	Delayed	Graft	Function,
Multivar	iate Mode	el			

Characteristic	RR (95% CI)	P Value
Frail	1.94 (1.13-3.36)	.02
Age, in decades	0.94 (0.74-1.20)	.62
Donor creatinine level ^a	1.26 (1.10-1.44)	.001
Cold ischemia time		
Live donor	1 [Reference]	
Deceased donor <12 h	4.46 (0.82-23.93)	.08
Deceased donor 12-24 h	6.92 (1.45-33.2)	.02
Deceased donor >24 h	8.47 (1.75-41.12)	.008
Extended criteria donor ^b	1.44 (0.74-2.80)	.28
Donor after cardiac death ^b	2.24 (0.88-5.74)	.09
BMI > 30	1.42 (0.79-2.60)	.24
African American	1.26 (0.64-2.48)	.50
Diabetes	1.04 (0.60-1.80)	.88
Preemptive transplant	0.25 (0.04-1.80)	.17

Garonzik-Wang/Segev, Archives Surgery, 2012

• 383 KT recipients

Frailty Prevalence: Early Readmission:

- 18.8% frail 45.8%

- 81.2% not frail 28.0%

• 383 KT recipients

• Frailty Prevalence: Early Readmission:

- 18.8% frail 45.8%

- 81.2% not frail 28.0%

Adjusted Rate (full model):

- Frail 1.61 (1.18-2.19)

McAdams-Demarco/Segev, AJT, 2013

McAdams-Demarco/Segev, AJT, 2013

KT Outcomes, by Frailty (N=537)

	Nonfrail	Intermediately Frail	Frail
Graft Loss	Ref	1.91 (0.75, 4.82)	2.50* (1.00, 6.23)
Mortality	Ref	1.59 (0.71, 3.57)	2.19* (1.00, 4.80)

All models adjusted for recipient, transplant and donor risk factors using the hybrid registry-augmented regression

McAdams-Demarco/Segev, AJT, 2015

MMF Dose Reduction

McAdams-Demarco/Segev, Transplantation, in press

Frailty and Length of Stay (N=589)

	Ratio (95% CI) of	days hospitalized	OR (95% CI) of 2 week LOS	
	Without DGF	With DGF	Without DGF	With DGF
Frail vs. Nonfrail	1.15 (1.02-1.29)	1.15 (1.02-1.29)	1.67 (1.15-2.43)	1.60 (1.08-2.37)
P-value	0.02	0.02	0.007	0.02

Change in Frailty after KT

McAdams-Demarco/Segev, JAGS, in revision

Next Steps

- Better understand frailty and cognitive decline in this population
- Better understand frailty trajectories (on dialysis, with transplant)
- Integrate into clinical practice
- Develop a disease-specific frailty measure
- Prehabilitation

Funding

- American Geriatrics Society
- NKF of Maryland
- Doris Duke Charitable Foundation
- K23AG032885
- R21DK085409
- R01AG042504

Epidemiology Research Group in Organ Transplantation (D Segev, Director)

Core Research Group

Medicine/Surgery

Morgan Grams, MD PhD
Nephrology Faculty; K08
Christing Durand MD

Christine Durand, MD ID Faculty; R01 Pending

Rebecca Craig-Schapiro, MD
Surgery Resident

Jackie Garonzik-Wang, MD PhD
Surgery Resident; PhD Graduate (KL2)

Elizabeth King, MD

Surgery Resident; PhD Student (F32)

Babak Orandi, MD PhD MSc Surgery Resident; PhD Graduate(F32)

Kyle Van Arendonk, MD PhD
Surgery Resident; PhD Graduate (KL2)

Medical/Graduate Students

Natasha Gupta
Medical Student (Doris Duke)
Lauren Kucirka, ScM
MD/PhD Student (F30)
Young Mee Choi

Epidemiology; MPH Student

Epidemiology/Biostatistics

Allan Massie, PhD
Epidemiology Faculty (K01 pending)

Mara McAdams-DeMarco, PhD Epidemiology Faculty (K01)

Tanjala Purnell, PhD Epidemiology Faculty

Abi Muzaale, MD, MHS Epidemiology Postdoc

Megan Salter, PhD

Epidemiology Postdoc (T32)

Andrew Law, ScM Epidemiology Staff

Xun Luo, MD ScM Analytical Staff

Israel Olorunda, MBBS MPH
Analytical Staff

Anna Poon, MHS MS

Analytical Staff

Computational Science

Sommer Gentry, PhD
Computer Science Faculty (HRSA)

Eric Chow, MHS

Decision Process Programmer/Analyst

Corey Wickliffe, MHS

Geographic Systems Analyst

Research Assistants

Full-Time:

Jennifer Alejo Amanda Brennan Ryan Brown Cassandra Delp Erika Jones Komal Kumar Katie Marks

Part-Time:
Lindsay Adam
Saad Anjum
Kate Appel
Olivia Berman
Seal-Bin Han
Diana Cantu-Reyna
Maurice Dunn
Laura Grau
Teal Harrison
Sara Hawa
Billy Kim
Arnaldo Mercado-Perez
Ashley Millette
Sachin Patel

Ana Quintal
Katrina Rios
Michael Setteducato
Chelsea Sicat

Affiliated

Daniel Scharfstein, ScD Biostatistics: Coinvestigator

Ravi Vardhan, PhD Biostatistics: Coinvestigator

Lucy Meoni, ScM

iostatistics: Coinvestigator

Josef Coresh, MD PhD

Epidemiology: Coinvestigator

Linda Kao, PhD

Epidemiology: Coinvestigator

Lauren Nicholas, PhD Health Policy: Coinvestigator

Andrew Cameron, MD PhD

Surgery: Collaborator

Niraj Desai MD Surgery: Collaborator

Bob Montgomery, MD PhD

Surgery: Collaborator

Nabil Dagher, MD Surgery: Mentee

Elliott Haut, MD PhD

Surgery: Mentee (KL2; PCORI)

Kim Steele, MD PhD

Surgery: Mentee (K23)

Diane Schwartz, MD Surgery: Mentee

Aliaksei Pustavoitau, MD Anesthesiology: Mentee (R03 pending)