Delirium and Neuroimaging: Structural, Functional, Amyloid

Ramona O. Hopkins, Ph.D.

Psychology Department and Neuroscience Center Brigham Young University and Critical Care Medicine Intermountain Medical Center

Disclosures

- Current funding: NIH/NHLBI funding: R01HL091760-01A1
- Other financial relationships: none
- Conflicts of interest: none

Structural Imaging

- 49 year Female 16 yrs education Severe community acquired pneumonia
- Hypoxia and hypotension → intubation and mechanical ventilation
- 48 hours \rightarrow renal failure, septic shock \rightarrow ARDS
 - 31 days MV
 - 37 days ICU LOS
 - 43 days hospital LOS
 - 11 days delirium duration

MRI, Critical illness and Delirium

- 43 year old
- All with delirium
- 7 normal CT scans
- 6 of 8 had WMH
 - 2 pts. Fazekas grade 1
 - 2 pts. grade 2
 - 2 pts. grade 3
- No
 - Atrophy
 - Ischemic lesions
 - Hemorrhagic lesions

67 year old female

Axial Flair WMHs Grade 3

Left – DWI map Anterior white matter hypointense

Right – ADC map Diffuse ADC increase: vasogenic edema

Post-Cardiac Surgery

- 130 patients 18 (13.8%) delirium
- Prevalence of severe WMH higher patients with delirium
 - Fazekas score = 3
 - OR: 3.9; 95% [CI] 1.2-12.5
- WMH risk factor for development of delirium

Study	Imaging Modality	N Pts./controls	Cause of delirium	Imaging Findings
Koponen et al., 1989	СТ	69 / 31	Heterogeneous	Atrophy R side focal infarcts
Figiel et al., 1989	MRI	5 / 55	Antidepressant	Basal ganglia lesions WMHs Cortical Atrophy ↑ VBRs
Figiel et al., 1990	MRI	10	ECT	Basal ganglia lesions WMHs
Figiel et al., 1990	CT / MRI	6	ECT	Basal ganglia lesions WMHs
Martin et al., 1992	CT / MRI	4 / 10	ECT in Stroke pts.	Caudate Nucleus lesions
Nargaratnam et al., 1995	СТ	5	Stroke	R subcortical infarcts
Kishi et al., 1995	CT / MRI	38 / 197	Critical illness (medial and trauma)	SAH / SDH R & L Ischemic lesions
	CT / MRI	49 / 153	Stroke	Cerebral Atrophy WM lesions
Yokota et al., 2003	Xenon CT	10	Trauma / Medial	↓ CBF frontal, temporal, occipital lobes, caudate, thalamus, lenticular nucleus
Caeiro et al., 2004	CT / MRI	29 / 189	Stroke	Ischemic lesions
Samton et al., 2005	СТ	22 / 11	Hypoxia, medical, drug intoxication	WMHs Subcortical atrophy
Fong et al., 2006	SPECT	22 / 11	Heterogeneous	↓ CBF frontal, parietal, occipital L temporal lobe, pons

Hopkins 2012 NeuroRehabilitation 31:311-318

Sepsis

Before Sepsis

24 days after Sepsis onset

N = 9 4 delirium, 5 coma 2 with normal scans 2 ischemic stroke 5 WMHs 75% abnormal imaging 60 Year old Male Increase in WMHs

Sharshar et al., 2007 ICM, 33:798-806

Before Sepsis 30 days after Sepsis

Acq 7.1/15 THR / IR/M

DG -12° PT -10° Po 1 G 10 T

79 Year old Female Increase in extent of WMHs

Sharshar et al., 2007 ICM, 33:798-806

Delirium Duration and Atrophy (all P values <0.001)

- 47 Critical ill patients
- Longer duration of delirium associated with greater brain atrophy.

Gunther et al., 2012 CCM, 40(7):2022-32

rCBF- Hypoactive Delirium

Critical ill patients Age 47.5 ± 12.3 **After Recovery APACHE II 16.5 ± 5.8 During Delirium** from Delirium First measurement Second measurement (mL/100 g per min)(mL/100 g per min)Region Р 37.8 ± 7.8 0.0056 Whole brain \rightarrow 65.4 ± 18.6 Cortex Frontal (bilateral) 58.7 ± 9.5 0.0010 38.1 ± 10.6 58.2 ± 8.4 **Right** frontal 38.8 ± 13.3 0.0007 Left frontal 37.5 ± 8.4 59.2 ± 11.8 0.0030 Temporal (bilateral) 39.6 ± 7.2 70.5 ± 7.2 0.0041 Right temporal 40.7 ± 7.0 71.7 ± 17.1 0.0120 Left temporal 38.8 ± 7.7 69.3 ± 9.8 0.0013 Occipital (bilateral) 31.4 ± 7.3 60.4 ± 13.1 0.0047 Right occipital 31.6 ± 8.5 60.7 ± 13.2 0.0045 Left occipital 31.2 ± 6.3 60.1 ± 14.0 0.0067 Subcortex Caudate head (bilateral) 47.5 ± 16.4 0.0220 88.0 ± 15.2 Right caudate head 48.3 ± 18.4 88.0 ± 27.6 0.0473 Left caudate head 46.7 ± 17.2 85.3 ± 20.8 0.0273 Thalamus (bilateral) 52.4 ± 10.5 102.1 ± 21.7 0.0045 54.4 ± 12.6 102.0 ± 25.7 0.0055 Right thalamus Left thalamus 50.2 ± 8.3 \rightarrow 98.4 ± 23.4 0.0044 Lenticular nucleus (bilateral) 50.8 ± 17.4 92.3 ± 22.5 0.0053 Right lenticular nucleus 49.3 ± 17.8 90.1 ± 23.1 0.0080 Left lenticular nucleus 52.3 ± 18.1 92.3 ± 22.5 0.0038

Global and Regional Hypoperfusion

Hospital Day 35.3 ± 19.3

Hospital Day 95.5 ± 13.5

Yokota et al., 2003 Psychiatry Clin Neurosci 57:337-39

SPECT Perfusion Changes in Patients with Delirium.

- Qualitative analysis: 50% changes in frontal & parietal perfusion
- Semi-quantitative analysis: change blood flow ratios L inferior frontal, R temporal, right occipital, and pons
- Inattention associated with perfusion abnormalities L inferior frontal region
- Delirium vs. No Delirium: change blood flow ratio parietal lobe (n=6)

SPECT

	No. of		
Reference (Ref. No.)	Patients/Controls	Cause of Onset	Location
Bogousslavshy et al. (10)	1/0	Right thalamic infarction	Right frontal hypoperfusion
Shih et al. (46)	1/0	Drug withdrawal	Left frontotemporal hypoperfusion
Kohira et al. (47)	1/0	Hepatic encephalopathy	Cerebellum, basal ganglia, cortical hyperperfusion
Doyle and Warden (48)	1/0	Cardiotomy	Right temporal-occipital hypoperfusion
Ohta et al. (49)	1/0	Portal-systemic encephalopathy	Bilateral parietal hypoperfusion
Kamijo et al. (50)	1/0	Barbiturate withdrawal	Basal ganglia hyperperfusion
Pittock et al. (51)	1/0	Transplant immunosuppression	Bilateral frontal parietal temporal hypoperfusion
Ikeda et al. (52)	6/0	Hepatic encephalopathy	Diffusely decreased cortical perfusion; in 4 participants recovery after liver transplant
Jalan et al. (53)	8/0	Oral amino acid loading in cirrhosis	Bilateral temporal lobe, left superior frontal gyrus,
Trzepacz et al. (54)	6/6	Cirrhosis	Right basal ganglia and bilateral frontotemproal
Strauss et al. (55)	10/0	Henetic encentralonathy	Erontal and basal ganglia hypoperfusion
Ω^{2} Carroll et al. (55)	10/10	Cirrhosis	Basal ganglia and occipital increase
O Carlon et al. (50)	10/10	Cirriosis	Anterior cingulate decrease
Yazgan et al. (57)	12/8	Hepatic encephalopathy	Bilateral thalamic hypoperfusion
Catafau et al. (58)	13/13	Hepatic encephalopathy	Prefrontal hypoperfusion. Striatal and medial temporal perfusion was higher in more impaired participants
Fong et al. (59)	22/6	Multiple etiologies in hospitalized medical patients	Parietal hypoperfusion in 6 Frontal hypoperfusion in 5 Reversible parietal hypoperfusion in 3 of 6
Ogasawara et al. (60)	5/36	Subdural hematoma	Hyperperfusion under surgical site
Gokgoz et al. (61)	6/44	Cardiac surgery	Reduced perfusion in bilateral temporoparietal
Gunaydin et al. (62)	7/43	Cardiac surgery	(Bilateral temporoparietal, frontal, and occipital)

Alsop et al., 2006, J of Gerontology, 61(12); 1287-93

Longitudinal rCBF in AD

Significant decrease in rCBF in frontal, temporal, parietal lobes, and posterior cingulate

DTI – White Matter Integrity

Decreased FA values of the Delirium Group

FA Values: Delirium vs. Non-delirium

A significant decrease in the FA values for the delirium group in Bilateral thalamus Bilateral deep white matter bilaterally Corpus callosum

Delirium Duration and Fractional Anisotropy in Corpus Callosum and Internal Capsule

Adjusted for age and sepsis, longer duration of delirium

Gunther et al., 2010 CCM , 40:2022-32

White Matter (FA) and Cognitive Function

Lower FA in ALIC associated with worse attention scores at 3 months Lower FA in genu CC associated with worse attention scores at 12 months

fMRI: Resting State and Delirium

- Dorsolateral prefrontal and posterior cingulate activity were inversely correlated in controls, and were strongly correlated during delirium
- Functional connectivity of thalamic and caudate nuclei with subcortical regions were reduced during delirium, recovered after delirium resolution
- Abnormal resting-state functional networks may underlie the pathophysiology of delirium
 Choi 2012 Am J psychiatry, 169:498-507

Potential Areas for Investigation

- Limited studies even in structural imaging
- Small sample sizes
- Lack of control groups
- Pathophysiology
- Risk factors
- Longitudinal studies
- Beyond clinical imaging- New analysis and modeling methods

Other Imaging Modalities

- Amyloid Imaging amyloid deposition post-delirium
- Arterial Spin Labeling blood flow and resting blood flow
- Blood Brain Barrier imaging disruption
- DTI white matter integrity and connectivity
- Functional MRI resting state, stimuli or task responses
- PET and SPECT neurotransmitter tracers (Ach, DA)

• Does etiology matter?