Importance of Training and Quality Control of Post-Operative Delirium Assessment:

Hochang Benjamin Lee, M.D.

Associate Professor of Psychiatry Yale University School of Medicine

Director, Psychological Medicine Service Yale New Haven Hospital

Disclosure

- Current funding:
 - Relevant:
 - R01 MH085740 (NIH/NIMH: PI Lee HB)
 - R01AG029656 (NIH/NIA: PI Silverstein J)
 - P30 DK34989 (NIH/NIDDK: Yale Liver Center Pilot Grant: PI: Lee HB)
 - Unrelated: RLS Foundation Research Grant (PI: LEE HB)
- Other financial relationships: None

Outline

- Briefly describe a geriatric/CL psychiatrist's perspective on difficulty in diagnosis of delirium.
- Describe three post-surgical delirium prevention trials and compare their training and quality assurance protocols.
 - Focus Cognitive Ancillary Study (PI: Gruber-Baldini)
 - STRIDE study (PI: Sieber)
 - Dexlirium Study (PI: Silverstein)
- Describe strengths and limitations of each method while focusing on pitfalls.

Why delirium diagnosis challenging for a psychiatrist as well.

- 1. Delirium is a longitudinal diagnosis
 - Lack of pre-morbid level of cognition or function
 - "Acute" versus "Gradual" change.
- 2. Symptoms of delirium commonly overlaps with symptoms of other psychiatric conditions (e.g. dementia and depression).
 - 46% of patients with delirium were misdiagnosed by the referring service personnel (Armstrong 1997)
 - 42% of "depression" referral were delirious (Farrel, 1995)
- 3. "Hardest diagnosis in psychiatry":
 - Milder, hypoactive delirium superimposed on dementia.

Change of Diagnostic Criteria in DSM

- DSM III (1980)
- DSM III-R (1987)
- DSM IV (1990)
- DSM V (2013)
- Depending on the definition, prevalence rates differ substantially (Liptzin 1991, Cole 2003, Laurila et al, 2003)
 - Of 230 geriatric hospital patients, prevalence varied depending on criteria:
 - DSM-IV (24.9% of the subjects) followed by DSM-III-R (19.5%), DSM-III (18.8%) and ICD-10 (10.1%).

Using CAM to make diagnosis of Delirium (Laurila, 2002)

- 81 consecutive elderly patients in geriatric hospital
- Sensitivity rates of the CAM were proved to be only moderate (0.81– 0.86) against all DSM criteria of delirium. The specificity rates were lower (0.63–0.84).
- <u>CAM defines delirium in its own way and, ironically and probably</u> provides the most enduring and generalizable diagnostic outcome.

Table 5. Sensitivity and specificity rates, positive and negative predictive values, and positive and negative likelihood ratios of CAM
compared to DSM-III, DSM-III-R, DSM-IV, and ICD-10 as reference standards

	DSM-III		DSM	DSM-IIIR		DSM-IV		ICD-10	
	+	_	+	_	+	_	+	_	
Positive CAM score	17	17	17	17	26	8	8	26	
Negative CAM score	3	44	4	43	6	41	2	45	
Sensitivity rate	0.85		0.81		0.81		0.80		
Specificity rate	0.72		0.72		0.84		0.63		
Positive predictive value	0.50		0.50		0.76		0.24		
Negative predictive value	0.94		0.91		0.87		0.96		
Likelihood ratio for a positive test	3.05		2.86		4.98		2.18		
Likelihood ratio for a negative test	0.21		0.27		0.22		0.32		

Use of CAM in PSD clinical trial

- Most of post-surgical delirium prevention trials utilizes CAM
 - Nearly 100%, if secondary outcomes.
- Why CAM in PSD studies?
 - Generalizable.
 - Validity is well-established
 - "Simplicity, " however, rigorous training is essential.
 - Minimally trained bedside nurses 23.8% and 66.7% sensitivity based on two scoring methods for CAM (Lemiengre et, JAGS 2006)
 - Partially trained research nurses 13% detection (Rolfson, IJP 1999)

"Myth of Simplicity"

- Wong CL, et al. JAMA 2010; 304:779-786
 - CAM has the best available supportive data as a bedside delirium instrument (summary-positive LR, 9.6; 95% CI, 5.8-16.0; summary-negative LR, 0.16; 95% CI, 0.09-0.29)."
 - Conclusion: "The choice of instrument may be dictated by the amount of time available and the discipline of the examiner; however, the best evidence supports use of the CAM, which takes 5 minutes to administer."
 - "...But how long does it take to get to CAM?"

But, how long does it take to GET TO CAM?

- Gathering information for each component of CAM takes time and clinical judgment
 - Acute cognitive change testing, review of records,
 - Attention testing cognition
 - Disorganized thought interview with the patient
 - Level of consciousness observation of the patient
- Delirium Diagnosis Methodology Used by Reference Raters in Research: A Survey-Based Study (Neufeld KJ, et al, under review)
 - 33 of 39 studies from 3 recent systematic reviews of delirium detection instruments.
 - Tremendous variability in diagnostic methods and rater backgrounds

Tremendous variability in incidence of acute posthip fracture delirium with CAM: 5 – 40% (Bruce 2006)

$\bullet \bullet$	
$\bullet \bullet$	
	•

AUTHORS	SETTING	EXCLUDED COGNITIVE IMPAIRMENT	AGE (YEARS)	N	RATING SCALE	POSTOP DAYS TESTED	INCIDENCE	95% CI
Johansson et al. 2002	Örebro County Hospital, Sweden	No	Mean = 80.4	47	NEECHAM	Day 7	4%	0.74– 15.7%
Brauer et al. 2000	Four New York hospitals	No	Median = 85	546	CAM	5 days/week	5.30%	3.6– 7.6%
Edlund <i>et al.</i> 1999	Pitea River Valley Hospital, Sweden	No	Mean = 77.1	44	DSM-IIIR/ OBS	Daily	11.40%	4.3– 25.4%
Morrison et al. 2003	Four New York hospitals	No	Not stated	525	CAM	5 days/week	14.00%	11.2-17.1%
Schuurmans et al. 2003	General hospital, Netherlands	No	Mean = 82.7	92	DSM-IV	Daily for 6 days	19.60%	12.3-29.4%
Edlund et al. 2001	University Hospital, Umeå, Sweden	No	Mean = 79.5	71	DSM-IV/OBS	Daily	26.80%	17.3– 38.8%
Formiga <i>et al.</i> 2003	Two university hospitals, Barcelona	No	Mean = 92.4	89	CAM	Day 1 or 2, and at discharge	28.10%	19.3– 38.8%
Gustafson <i>et al</i> . 1988		No	Mean = 79.3	74	DSM-III/OBS	Daily	41.90%	30.7– 53.9%
Zakriya <i>et al</i> . 2004	Medical Centre, U.S.A.	No – all had dementia	Mean = 78–79	10	CAM	Daily	50%	20.1– 79.9%
Thakur <i>et al.</i> 2002	Community teaching hospital, U.S.A.	No	Range = 66–98	30	CAM	Not given	53.30%	35.4– 71.2%
Kagansky <i>et al</i> . 2004		Excluded severe dementia	Mean = 82	96	CAM/DRS	Day 7	6.30%	2.6– 13.6%
Andersson <i>et al.</i> 2001	Lund County City Hospital, Sweden	Confusional states excluded	Range = 65–96	208	DSM-IV/OBS	Daily	20.20%	14.7– 25.6%
Duppils et al. 2000	County hospital, Sweden	Dementia and MMSE ≤ 10 excluded	65+	149	DSM-IV	At least twice daily	24.30%	17.4– 31.2%
Zakriya <i>et al</i> . 2002	Medical Centre, U.S.A.	Dementia excluded	Mean = 77.6	168	CAM	Day 2 until discharge	28.00%	21.2– 34.8%
Galanakis <i>et al.</i> 2001		Severe dementia excluded	Mean = 74.9	37	CAM	Days 1–7	40.50%	24.7– 56.3%
Bowman 1997	Manitoba teaching hospital, Canada	Dementia and MMSE ≤ 23 excluded	Mean = 80	17	DSM-III	Days 1–5, twice daily	47.10%	23.4– 70.8%

Importance of Case Ascertainment methods Delirium Prevention or Treatment Trials

- Treatment Trials
 - Recruitment of delirious study subjects
 - Under-detection: Cannot run the trials
 - Over-detection: Weakened signal of intervention by recruiting wrong subjects
- Prevention Trials:
 - Primary outcomes: Delirium
 - Under-detection: Need a large sample size
 - Over -detection: Results in eronneously negative or positive findings
- Must balance practicality and science based on available personnel, setting, and budget.

Lessons from Three NIA-sponsored Post-Surgical Delirium Prevention Trials.

- Focus Cognitive Ancillary Study (PI: Gruber-Baldini)
 - Completed my role: peripheral involvement.
- STRIDE study (PI: Sieber)
 - On-going designed the study outcomes/ training protocol/ quality assurance while at Hopkins
- Dexlirium Study (PI: Silverstein)
 - Ongoing primary delirium "expert"- responsible for training and quality assurance.

Summary

	Focus Cognition	Dexlirium	STRIDE
Sample size	139	708 (planned)	200
Site #	17	7	1
Intervention	Transfusion	Dexmedotimidine	Sedation Level
Instruments	DIS, MDAS, CAM	DIS, MDAS, CAM	DRS-98, CAM, DI
Training	Web-based certification and limited in-person training in the beginning.	Web-based/ supplemented by in-person at each site by coordinating center	Fully in-person
Quality Assurance	Weekly Teleconference	Teleconference and monthly case presentation and data review	Consensus Panel Case presentation

FOCUS Cognitive Ancillary Study (PI: Ann Gruber-Baldini)

- Goal: To examine the impact of the hemoglobin interventions on delirium in a subsample of 200 subjects (100 per randomization group).
- Reality: 17 sites and short duration of intense recruitment.
 - Must weigh the issue of fidelity and practicality of outcome measure (delirium: case versus severity)
 - Need for multiple raters in multiple sites
 - Cannot utilize clinical psychiatrists for all sites
 - Alternative: Train available research staff (including nonclinical Research Assistants)
 - Delirium Symptom Interview (structured)
 - Memorial Delirium Assessment Scale (severity)
 - Confusion Assessment Method primary outcome (case)

FOCUS Cognitive Study: Training and Quality Assuranance

- Training:
 - Investigator kick-off meeting
 - Introductory lectures and training
 - Certification: Web-based training certification process -3 video cases
 - Individual ratings of DSI, MDAS and CAM submitted to the coordinating site for Case #3
 - Case #3 answers are compared to the master answers with individual feedback.
- Quality Assurance
 - Site visits and teleconference

FOCUS Cognitive Study: Strengths and limitations

- Balancing fidelity and practicality
 - Wide range of raters (physicians, nurses, nonclinical RAs)
 - What is the "gold standard"?
 - Web-based training has its strengths and weaknesses
 - Covers multiple sites distributed widely in geography
 - Cannot provide close oversight over the training
 - RA turnover is difficult to overcome
 - However, for multi-site clinical trial of short duration and limited budget, probably no other choice.

A Strategy to Reduce the Incidence of Post-Operative Delirium in Elderly patients: The STRIDE Study (PI: Frederick Sieber)

- Sponsor: NIA
- Design: Single-site randomized double-blinded clinical trial.
- Aim: to determine whether limiting the **level of sedation** in elderly patients during spinal anesthesia for surgical repair of a hip fracture will lead to a lower rate of postoperative delirium.
- Intervention: To give one group of elderly traumatic hip fracture patients standard spinal anesthesia, with light-to-moderate sedation, and the other group standard spinal anesthesia with deeper sedation.

STRIDE Study: Training and QA

- Single site study with experienced research nurses as the rater.
- CL Psychiatrist trainer is on-site and available at all times.
- Introductory Group Seminar 6+ hours to go over the manuals for CAM and DRS-98.
- In person training three practice cases prior to data collection.
- Bi-weekly case presentation by the Research RN to the consensus panel.
 - Multi-disciplinary consensus panel consists of psychiatrist, geriatrician, anesthesiologist, and surgeon.

STRIDE Study: Strengths and limitations

- Single-site design allows more rigorous training protocol and quality assurance.
- high personnel cost for rater/trainer/consensus panel.
 - Consensus Panel blind to the group assignment affords more "gold-standard"-like comparison.
 - Took a long lead-in time.
- Consensus panel methods "adapted" from other dementia prevention studies.

Dexlirium Study (PI: Jeff Silverstein)

- Sponsor: NIA -
- randomized double blinded, parallel group, placebocontrolled study of the effects of perioperative dexmedetomidine on the incidence of postoperative delirium and postoperative cognitive dysfunction
- Sites: 8 sites
- Duration: "5 years"
- Target sample: 706 elderly patients undergoing elective "major" general surgery under general anesthesia
- dexmedetomidine vs. placebo

Dexlirium Study: before QA

- Limitation imposed by the multi-site study design and limited personnel and budget.
 - Also, rapid turnover of raters
- Similar to Focus Cognitive Study Wide range of clinical background among the raters: "non-clinical" RA to nurses and MDs.
- Formal training and QA protocol was implemented in the middle of the study
 - Concern about low delirium incidence

Dexlirium Study: Training and QA

- RAs asked to read the protocol manuals and go through the web-based certification process first.
- 3 video cases from the FOCUS cognition study
- Site visits by PI and Delirium Trainer
- Monthly teleconference with delirium assessment case presentation from each site.
- Data review of every delirium assessment by the neuropsychiatrist for detection of data inconsistency and data reconciliation.

Detection of incident delirium before and after QA program

Unpublished data

Delirium Incidence before and after QA implemented

Unpublished data

Dexlirium Study: Strengths and Limitations

- Balancing fidelity and feasibility with limited budget and personnel
 - Who is the gold standard/ reference rater in each site?
- Widely varied background of RAs
 - From post-doc fellow/ junior faculty, MDs, RNs, and RAs with no clinical backgroun who just graduated from college.
 - Individual attention is absolutely necessary
 - Clinical background not necessarily an advantage.
- Rapid turn-over rate of RAs in some sites.
 - High training burden.

Lessons learned

- Training and quality assurance for delirium assessment is an arduous, but <u>absolutely necessary task.</u>
- Rigorous training protocol and continuous quality assurance effort is necessary
 - A clinical trial is as good as the fidelity of its clinical outcome
- Need for more standardized assessment strategy before applying diagnostic instrument like CAM.
 - Especially for the non-clinical raters.
- WE ARE IN THE EARLY STAGE OF DEVELOPING THE FIELD – NEED TO LEARN FROM EACH OTHER

Gratitude

- Without their generous guidance and help, this presentation would not have been possible.
 - Focus Cognitive Ancillary Study
 - Anne Gruber-Baldini
 - Ed Marcantonio
 - STRIDE study
 - Frederick Sieber
 - Dexlirium Study
 - Jeff Silverstein
 - NIA for sponsoring the studies above