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Clinical Frailty Scale*

| Very Fit — People who are robust, active, energetic
and motivated. These people commonly exercise
regularly. They are among the fittest for their age.

2 Well - People who have no active disease
symptoms but are less fit than category |. Often, they
exercise or are very active occasionally, e.g. seasonally.

3 Managing Well — People whose medical problems
are well controlled, but are not regularly active
beyond routine walking.

4 Vulnerable —While not dependent on others for
dally help, often symptoms limit activities. A common
complaint is being “slowed up”, and/or being tired
during the day.

5 Mildly Frail - These people often have more
evident slowing, and need help in high order IADLs
(finances, transportation, heavy housework, medica-
tions). Typically, mild frailty progressively impairs
shopping and walking outside alone, meal preparation
and housework.

6 Moderately Frail — People need help with all
outside activities and with keeping house. Inside, they
often have problems with stairs and need help with
bathing and might need minimal assistance (cuing,
standby) with dressing.

7 Severely Frail - Completely dependent for
personal care, from whatever cause (physical or
cognitive). Even so, they seem stable and not at
high nisk of dying (within ~ 6 months).

8 Very Severely Frail - Completely dependent,
approaching the end of life. Typically, they could

| not recover even from a minor illness.

9.Terminally Il - Approaching the end of life. This
category applies to people with a life expectancy
<6 months, who are not otherwise evidently frail.

Scoring frailty in people with dementia

The degree of frailty corresponds to the degree of dementia.
Common symptoms in mild dementia include forgetting the
details of a recent event, though still remembering the event itself,
repeating the same question/story and social withdrawal.

In moderate dementia, recent memory is very impaired, even
though they seemingly can remember their past life events well.
They can do personal care with prompting.

In severe dementia, they cannot do personal care without help.

* |. Canadian Study on Health & Aging, Revised 2008.
2. K. Rockwood et al. A global clinical measure of fitness and
frailty in elderly people. CMA] 2005;173:489-495.
mission granted UNIVERSITY
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The Cycle of Frailty (one of the many versions)
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What are the mechanisms by which aging and disease
affect aging phenotypes and longevity?
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Is the Biology of Aging at the Core Of Frailty?
Can This Hypothesis be Tested?
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Is the Biology of Aging at the Core Of Frailty?
Can This Hypothesis be Tested?
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Genes up-regulated with aging
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Aging is associated with up-regulation of immune function genes.

Transcriptome-wide meta-analysis of genes whose expression differs by age in 7,257 individuals of European ancestry.
Findings replicated in another 8,009 individuals. 1,497 genes were differentially expressed with age. The major cluster of
positively age-correlated genes (GeneNetwork pathway, 77 genes) was related to innate and adaptive immunity,
suggesting that dysregulation of the immune leading to a pro-inflammatory state is an hallmark of aging.




Interleukin-6 Serum Levels Predict Incident Disability
A Case Cohort Study Nested in the EPESE
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IL-6 is a Cross-Sectional and Longitudinal Predictor of Comorbidity
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4. IL-6 as risk factor for multimorbidity.

A mild chronic pro-inflammatory state, characterized by high levels of IL-6, is a typical phenotype associated with older age and has been
implicated in the pathogenesis of many age-related chronic diseases. In the INCHIANTI study (n=914, over 6-year follow-up) we
demonstrated that IL-6 was a strong cross sectional and longitudinal correlate of multimorbidity, and increase in IL-6 over time
independently predicted even higher increase in multimorbidity.



Systemic Effects of Localized Inflammation

Harmful stimuli:

e Damaged cells FLAMMATION Effective “Switch off”
 Irritant chemicals attempts to remove damaged _E';'I“i“ate:'the cause of inflammation
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Changes In basal gene expression in CD4* cells

cytapheresis
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Pathway

Cell-intrinsic activation of NF-xB target genes

Hypothesis: Effects of in vivo inflammatory milieu should be
reflected in the gene expression pattern in freshly isolated cells
compared to cells cultured ex vivo
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Proteomic analyses of age-associated changes in CD4* T cells

cytapheresis Protein quantitation by iTRAQ
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Experimental design

iTRAQ iTRAQ 1 iTRAQ 2 iTRAQ 3 iTRAQ 4
Reagents | Sample # Age Sample # Age Sample# Age | Sample# Age
113 ND340 30 ND617* 21 ND620 34 ND737 21
114 ND617* 21 ND620 34 ND617* 21 BL4906 70
115 BL1039 74 ND620 34 ND554 34 ND617* 21
116 75 BL4931 74 BL4855 70 ND620 34
117 BL1530 77 BL4943 73 BL4880 71 BL4941 71
118 BL4942 74 BL4926 73 BL4905 72 BL4924 72
119 BL4931 76 77 BL4939 73 ND394 70
121 BL4911 82 BL1193 68 BL4877 83 BL4929 76

4 young (20-34y)
18 old (68-83y)
ND617 used as control in each assay

ND620 repeated in 3 assays (tech control)
2 ‘old’ repeats in independent assays

|

27 differentially expressed proteins between Y and O (>1.5x, p<0.05)



Pathways identified based on differential protein expression
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Multiple components of the mitochondrial electron transport
chain are up-requlated in CD4*T cells from older individuals
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Is the Biology of Aging at the Core Of Frailty?
Can This Hypothesis be Tested?

Energetics




Age-dependent changes in mitochondrial morphology and volume are
not predictors of lifespan
Saroj G. Regmi et al.
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Age-dependent mitochondrial changes in C. elegans body wall muscle cells
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Fig. 1. Changes with age in number of mitochondria
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Fig. 2. Changes with age in size of mitochondria,

< » Age Changes in Size and Number of Mitochondria of Human Hepatic Cells
- Hisashi Tauchi and Tsuneko Sato- J Gerontol. 1968 Oct;23(4):454-61
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P;, MRS: Rate of Phosphocreatine Replenishment and Aging
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E Em Skeletal Muscle Mitochondrial Energetics Are Associated With Maximal Aerobic Capacity
" and Walking Speed in Older Adults. Paul M. Coen et al. J Gerontol A Biol Sci Med Sci. 2013;68(4):447-455
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Skeletal Muscle Mitochondrial Energetics Are
Associated With Maximal Aerobic Capacity and
Walking Speed in Older Adults

Paul M. Coen et al. J Gerontol A Biol Sci Med Sci. 2013;68(4):447-455
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Excessive Mortality

High Basal Metabolic Rate Is a Risk Factor for
Mortality: The Baltimore Longitudinal Study of Aging

\ I I I I
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Basal Metabolic Rate (kcal/hr/m?)

Ruggiero C. et al. Journals of Gerontology: Medical Sciences 2008; 63A:698




Multi-morbidity and Resting Metabolic Rate
(RMR): longitudinal association

RMR RMR RMR

Baseline

2 year follow up 4 year follow up

Number of diseases Number of diseases Number of diseases

Baseline 2 year follow up 4 year follow up

*adjusted for baseline age, sex, baseline total

body lean mass and fat mass )
BLSA (unpublished data)



Is the Biology of Aging at the Core Of Frailty?
Can This Hypothesis be Tested?
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DNAm Age Correlates with
Chronologic Age

cor=0.85, p<1e-200
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DMNA methylation age
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DNAM Age

DNAm Age Tracks Chronologic
Age Over a 9-year Period
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DNA methylation age of blood predicts all-cause mortality in later life
Genome Biology doi:10.1186/s13059-015-0584-6 (2015)

Riccardo E Marioni, Sonia Shah, Allan F McRae, Brian H Chen et al.
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Is the Biology of Aging at the Core Of Frailty?
Can This Hypothesis be Tested?
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Telomere length declines with aging.
Attrition of telomere length in
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Is the Biology of Aging at the Core Of Frailty?
Can This Hypothesis be Tested?

Cellular
Senescence




In 1961, L. Hayflick proposed that the limited lifespan of
cells in culture represented the phenomenon of aging at
the cellular level
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In 1998, it was conclusively demonstrated that replicative cell
senescence is caused by telomere shortening

In these experiments, the authors introduced telomerase, and that was sufficient to abrogate
cell senescence (as shown by lack of SA-bGal staining in the upper panels)

A G Bodnar et al. Science 1998:279:349-352




Telomere shortening is only one of many paths to
cell senescence
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Collado & Serrano — Nat. Rev. Cancer 6: 472 (2006)



Differentiated Cell Fates Under Stress

Proliferation

Cancer

Senescence Apoptosis



Do they exist in vivo?
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Chemotherapy-induced senescence /n vivo (mice)

untreated doxorubicin doxorubicin
0.05 mg/kg 0.2 mg/kg

HT1080 fibrosarcoma xenograft
Roninson et al., Drug Res. Updat. 4, 303, 2001



Senescent cells
secrete a large
number (and large
amounts) of
biologically active

factors with the
potential of affecting
cellular physiology /
responses in
neighboring, non-
senescent cells

Mouse / Human
protein orthologues

IL-6

KC / GROa (CXCL1)
MIP-2 / GROb (CXCL2)
IGFBP-6

STNF RI

LIX / ENA-78 (CXCL5)
sTNF RII

RANTES (CCLS)
IL-1b

MCP1 (CCL2)
IGFBP-3

MIP-3a (CCL 20)
Lymphotactin (XCL1)
Leptin / OB

Eotaxin (CCL11)
Eotaxin-2 (CCL 24)
VEGF

Kit-L / SCF

TARC (CCL17)
TCA-3 /1309 (CCL1)
MIP-1a (CCL 3)
IFN-gamma

CTACK (CCL27)
IL-1a

IL-3

MIP-3b (CCL 19)
GCSF (CSF3)

IL-13

mouse
human
mouse
human

p values
( SEN (XRA)
vs PRE )

0.00
0.00
0.02
0.00
0.02
0.01
0.03
0.02
0.01
0.07
0.01
0.10
0.08
0.03
0.01
0.03
0.04

ns
0.04
0.06

ns

ns
0.01
0.04

ns

ns
0.05

ns

mouse human

0.00
0.00
0.00
0.04
0.03
0.00
0.02

ns

ns
0.00

ns
0.01
0.09
0.00

ns
0.06
0.09
0.03

0.04
ns
0.01
0.04
ns
ns




Purging Cells in Mice Is Found to Combat Aging Ills

Jan M. van Deursen

Two 9-month-old mice from the study. The one on the right received the drug to eliminate senescent cells.

By NICHOLAS WADE
Published: November 2, 2011

In a potentially fundamental advance, researchers have opened up a TWITTER
novel approach to combating the effects of aging with the discovery LINKEDIN
that a special category of cells, known as senescent cells, are bad ——

antAare that nramnta tha agina af tha ticonnae Maancinag tha hadxsr af tha



Clearance of pl6™***-positive senescent cells delays

ageing-associated disorders

Darren J. Baker??, Tobias Wijshakel“’, Tamar Tchkonia®, Nathan K. LeBrasseur®>®, Bennett G. Childs', Bart van de Sluis?,
James L. Kirkland® & Jan M. van Deursen"?3
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Expression of p16INK4a in peripheral blood T-cells is a biomarker of human aging
Yan Liu, Hanna K. Sanoff, Hyunsoon Cho, Christin E. Burd, Chad Torrice, Joseph G. Ibrahim,
Nancy E. Thomas and Norman E. Sharpless.
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SATELLITE CELLS AND MYONUCLEI IN
A ﬁ YOUNG AND ELDERLY WOMEN AND MEN

Fawzi Kadi et al. Muscle Nerve 29: 120-127, 2004

Table 2. Muscle fibers, satellite cells, and myonuclei in the tibialis anterior muscle of young and elderly women and men.

Young

Elderly

Women (n = 16)

Men (n = 15)

Women (n = 14)

Men (n = 13)

No. of muscle fibers (f)

No. of satellite cells (s)

No. of myonuclei (m)

Total number of nuclei (s+m)

No. of satellite cells/muscle fiber (s/f)

No. of myonuclei/muscle fiber (m/f)

Relative number of satellite cells
[s/(m + s) x 100] (%)

218 + 12 (210-243)
37 = 10 (19-63)

493 + 72 (391-655)
530 + 73 (430-700)

0.17 + 0.04 (0.09-0.28)

2.25 + 0.27 (1.89-2.76)

7.1 +1.9(3.4-11.2)

212 + 8 (192-223)

40 = 11 (24-58)
545 + 54 (461-627)
585 + 56 (505-683)
0.19 £ 0.05(0.11-0.29)
2.57 £ 0.23 (2.28-2.97)

6.9+ 1.8(4.4-11.2)

219 + 12 (205-241)
28 + 8 (17-42)

611 + 61 (550-719)

639 + 62 (574-743)

0.13 + 0.04 (0.08-0.20)

2.79 + 0.196 (2.46-3.21)

44 +1.3(2.86.6)

210 + 18 (171-236)
25 + 5 (13-35)

664 + 118 (481-844)

639 + 115 (468-818)

0.12 + 0.03 (0.08-0.17)

3.16 + 0.43 (2.37-4.04)

3.9 £ 0.9 (2.7-5.7)

Values are presented as mean * SD and range.
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CONSEQUENCES OF DNA DAMAGE

STRESS

Endogenous Environmental

DNA Lesion \ / TRANSCRIPTION:

Blockage or Error
DNA REPAIR <

SYSTEMS UNREPAIRED

A
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Blockage or Error

|

Cellular Dysfunction
Genetic Instability

DEFECTS in repair of DNA damage Cell Death

associate with aging and age-related |
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NEURODEGENERATION

AGING PROCESS




Multiplexed DNA repair assays for multiple lesions
and multiple doses via transcription inhibition
and transcriptional mutagenesis

Zachary D. Nagel™®, Carrie M. Margulies®®, Isaac A. Chaim™P, Siobhan K. McRee®®, Patrizia Mazzucato™®,
Anwaar Ahmad®®, Ryan P. Abo®", Vincent L. Butty®™““, Anthony L. Forget®®, and Leona D. Samson®"<¢!
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Dose to Plasmid, J/m? “
DNA lesions are introduced into fluorescent reporter plasmids in vitro. Numbers labeling the plasmids represent the dose
(in joules per square meter) of UV radiation. Following treatment, plasmids were combined and cotransfected into cells.
After 18 or 40 h incubation, cells were assayed for fluorescence by flow cytometry. Comparison of fluorescence signals
with those from cells transfected with undamaged plasmids yields a dose—response curve.

PNAS | Published online April 22, 2014 | E1823-E1832



The Green Ear by Gianni Rodari

One day as | took the train direct to Capranica-Viterbo

a man got on with an ear as green as an unripe tomato.

He wasn’t exactly young at all, but rather somewhat older.
Except for his bright green ear, he was totally, totally in order.

| quickly moved and changed my seat

to study this phenomenon from head to feet.

“Sir,” | said to him, “l see you’ve reached a certain age,
so why a green ear at this late stage?”

“Just say,” he answered with courtesy, “that I've become quite old. mfgw'tz ﬁ;iegozasr(um
This ear is now the only thing left from my youth—if truth be told.

This ear, a child’s ear, is used to help me grasp what | can—

those voices adults don’t ever hear and will never understand.

| listen to what the birds say, to the words of all the trees.

| listen to the clouds that pass as well as the rocks and streams.
| understand the children when they say some things | hear,
those things that seem so strange to every grown-up’s ear.”

That’s what he said. There with an ear as green as an unripe tomato
on the day that | took the train direct to Capranica-Viterbo.
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Ferrucci L et al. Biomarkers of frailty in older persons.
J Endocrinol Invest 2002;25(10 Suppl):10-15




